Cite

[1] NEMETZ, A. W. et al. 2018. FE temperature- and residual stress prediction in milling inserts and correlation with experimentally observed damage mechanisms. Journal of Materials Processing Technology, 256, pp. 98-108. [Online]. http://www.sciencedirect.com/science/article/pii/S092401361830040210.1016/j.jmatprotec.2018.01.039Search in Google Scholar

[2] BRECHER, CH., ESSER, B., FALKER, J., KNEER, F., FEY, M. 2018. Modelling of ball screw drives rolling element contact characteristics. CIRP Annals, 67, pp. 409-412, 2018. [Online]. http://www.sciencedirect.com/science/article/pii/S000785061830133110.1016/j.cirp.2018.04.109Search in Google Scholar

[3] MAO, K. 2007. Gear tooth contact analysis and its application in the reduction of fatigue wear. Wear, 262, pp. 1281-1288. [Online]. http://www.sciencedirect.com/science/article/pii/S004316480600268710.1016/j.wear.2006.06.019Search in Google Scholar

[4] WIEST, M., KASSA, E., DAVES, W., NIELSEN, J. C. O., OSSBERGER, H. 2008. Assessment of methods for calculating contact pressure in wheel-rail/switch contact. Wear, 265, pp. 1439-1445, Contact Mechanics and Wear of Rail/Wheel Systems - CM2006. [Online]. http://www.sciencedirect.com/science/article/pii/S004316480800179810.1016/j.wear.2008.02.039Search in Google Scholar

[5] MAJZOOBI, G. H., ABBASI, F. 2017. On the effect of shot-peening on fretting fatigue of Al7075-T6 under cyclic normal contact loading. Surface and Coatings Technology, 328, pp. 292-303. [Online]. http://www.sciencedirect.com/science/article/pii/S025789721730877010.1016/j.surfcoat.2017.08.067Search in Google Scholar

[6] KRÁČALÍK, M., TRUMMER, G., DAVES, W. 2016. Application of 2D finite element analysis to compare cracking behaviour in twin-disc tests and full scale wheel/rail experiments. Wear, 346-347, pp. 140-147. [Online]. http://www.sciencedirect.com/science/article/pii/S004316481500489510.1016/j.wear.2015.11.013Search in Google Scholar

[7] WEI DA-SHENG, SHI LIANG, WANG YAN-RONG. 2015. Cyclic plastic behavior of dovetail under fretting load. Engineering Failure Analysis, 55, pp. 100-114. [Online]. http://www.sciencedirect.com/science/article/pii/S135063071500159410.1016/j.engfailanal.2015.05.009Search in Google Scholar

[8] SASAGAWA, K., NARITA, J. 2017. Development of thin and flexible contact pressure sensing system for high spatial resolution measurements. Sensors and Actuators A: Physical, 263, pp. 610-613. [Online]. http://www.sciencedirect.com/science/article/pii/S092442471630563510.1016/j.sna.2017.07.024Search in Google Scholar

[9] DU FEI, LI BAOTONG, ZHANG JIE, QUAN ZHU MIN, HONG JUN. 2015. Ultrasonic measurement of contact stiffness and pressure distribution on spindle–holder taper interfaces. International Journal of Machine Tools and Manufacture, 97, pp. 18-28. [Online]. http://www.sciencedirect.com/science/article/pii/S089069551530052310.1016/j.ijmachtools.2015.06.007Search in Google Scholar

[10] DÖRNER, F., KÖRBLEIN CH., SCHINDLER, CH. 2014. On the accuracy of the pressure measurement film in Hertzian contact situations similar to wheel-rail contact applications. Wear, vol. 317, pp. 241-245. [Online]. http://www.sciencedirect.com/science/article/pii/S004316481400197510.1016/j.wear.2014.06.010Search in Google Scholar

[11] SOLLE, J., LINARES, J. M., SPRAUEL, J. M., MERMOZ, E. 2012. Optical measurement for the estimation of contact pressure and stress. CIRP Annals, 61, pp. 483-486. [Online]. http://www.sciencedirect.com/science/article/pii/S000785061200130810.1016/j.cirp.2012.03.128Search in Google Scholar

[12] HAN XINGHUI, HUA LIN. 2013. 3D FE modelling of contact pressure response in cold rotary forging. Tribology International, 57, pp. 115-123. [Online]. http://www.sciencedirect.com/science/article/pii/S0301679X1200250210.1016/j.triboint.2012.07.012Search in Google Scholar

[13] NAJJARI, M., GUILBAULT, R. 2014. Modeling the edge contact effect of finite contact lines on subsurface stresses. Tribology International, 77, pp. 78-85. [Online]. http://www.sciencedirect.com/science/article/pii/S0301679X1400156X10.1016/j.triboint.2014.04.024Search in Google Scholar

[14] BLANCO-LORENZO, J., SANTAMARIA, J., VADILLO, E. G., CORREA, N. 2018. A contact mechanics study of 3D frictional conformal contact. Tribology International, 119, pp. 143-156. [Online]. http://www.sciencedirect.com/science/article/pii/S0301679X1730486310.1016/j.triboint.2017.10.022Search in Google Scholar

[15] Datasheet: 1.4545 (15-5PH®), S155500 | METALCORSearch in Google Scholar

[16] FARAHMAND, B., NIKBIN, K. 2008. Predicting fracture and fatigue crack growth properties using tensile properties, Engineering Fracture Mechanics, 75, pp. 2144-2155. [Online]. http://www.sciencedirect.com/science/article/pii/S001379440700388810.1016/j.engfracmech.2007.10.012Search in Google Scholar

[17] JOHNSON, K. 1985. Contact Mechanics. Cambridge: Cambridge University Press. doi:10.1017/CBO978113917173110.1017/CBO9781139171731Open DOISearch in Google Scholar

[18] FKM2012; Rechnerischer Festigkeitnachweis für Maschinenbauteile. 2012: VDMA Verlag, ISBN 978-3-8163-0605-4 (in German)Search in Google Scholar

eISSN:
1338-0532
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Engineering, Introductions and Overviews, other