Cite

[1] Goricki W, Schubert G, Riedmueller G. New developments for the design and construction of tunnels in complex rock masses. International Journal of Rock Mechanics and Mining Sciences 2004;41(3):497-8.10.1016/j.ijrmms.2003.12.033 Search in Google Scholar

[2] H. Khelalfa, June 2020. Tunnel Executors- NATM’s Recommendations and Guidelines. LAMBERT Academic Publishing. ISBN: 978-620-2-67199-6. Search in Google Scholar

[3] Schubert W. Basics and application of the austrian guideline for the geomechanical design of underground structures. In: EUROCK2004 and 53th Geomechanics Colloquium. VGE; 2004. Search in Google Scholar

[4] Potsch M, Schubert W, Goricki A, Steidl A. Determination of rock mass behaviour types, a case study. In: EUROCK2004 and 53th Geomechanics Colloquium. VGE; 2004. Search in Google Scholar

[5] Palmstrom A, Stille H. Ground behaviour and rock engineering tools for underground excavations. Tunnelling and Underground Space Technology 2007;22(4):363-76.10.1016/j.tust.2006.03.006 Search in Google Scholar

[6] Taromi M, Eftekhari A, Hamidi JK, Eghbali A (2018) Tunnel designing and construction process in difficult ground conditions using controlled deformations (ADECO) approach; a case study. Int J Min Geo-Eng IJMGE 52–2:149–160 Search in Google Scholar

[7] Sun S, Li S, Li L, Shi S, Wang J, Hu J, Hu C (2019) Slope stability analysis and protection measures in bridge and tunnel engineering: a practical case study from Southwestern China. Bull Eng Geol Environ 78:3305–332110.1007/s10064-018-1362-y Search in Google Scholar

[8] ROUILI, A., TOUAHMIA, M. and DJERBIB, Youcef (2018). Numerical analysis of the partial collapse of a twin-tubes tunnel. In: KOHOUTKOVA, Alena, VITEK, Jan L.,FRANTOVA, Michaela and BILY, Petr, (eds.) Proceedings of the 12th international PhD symposium in civil engineering. federation internationale du beton (fib), 641-648. Search in Google Scholar

[9] Messioud S, Mokhbi H, Khelalfa H, Khelalef, Ishaq Laouar. Collapse Investigation and Numerical analysis of the Repair and completion of the Twin-Tube Tunnel of Jebel El-Ouahch T1 in Constantine Province, Algeria. Indian Journal of Engineering, 2021, 18(50), 240-257 Search in Google Scholar

[10] Fang Q, Zhang D, Li Q, Ngai L, Wong Y. Effects of twin tunnels construction beneath existing shield-driven twin tunnels. Tunnelling and Underground Space Technology 2015;45:128-37.10.1016/j.tust.2014.10.001 Search in Google Scholar

[11] Osman AS. Stability of unlined twin tunnels in undrained clay. Tunnelling and Underground Space Technology 2010;25(3):290-6.10.1016/j.tust.2010.01.004 Search in Google Scholar

[12] Soliman E, Duddeck H, Ahrens H. Two- and three-dimensional analysis of closely spaced double-tube tunnels. Tunnelling and Underground Space Technology 1993;8(1):13-8.10.1016/0886-7798(93)90130-N Search in Google Scholar

[13] Sahoo JP, Kumar J. Stability of long unsupported twin circular tunnels in soils. Tunnelling and Underground Space Technology 2013;38:326-35.10.1016/j.tust.2013.07.005 Search in Google Scholar

[14] Zhang ZX, Liu C, Huang X, Kwok CY, Teng L. Three-dimensional finite-element analysis on ground responses during twin-tunnel construction using the URUP method. Tunnelling and Underground Space Technology 2016b;58: 133-46.10.1016/j.tust.2016.05.001 Search in Google Scholar

[15] Mirsepahi, M., Nayeri, A., Lajevardi, S.H. et al. Effect of multi-faced twin tunneling in different depths on a single pile. Innov. Infrastruct. Solut. 6, 42 (2021). https://doi.org/10.1007/s41062-020-00425-5 Search in Google Scholar

[16] Kaya A, Akgün A, Karaman K, Bulut F (2016) Understanding the mechanism of slope failure on a nearby highway tunnel route by different slope stability analysis methods: a case from NE Turkey. Bull Eng Geol Environ 75:945–95810.1007/s10064-015-0770-5 Search in Google Scholar

[17] Aygar EB, Gokceoglu C (2020) Problems encountered during a railway tunnel excavation in squeezing and swelling materials and possible engineering measures: a case study from Turkey. Sustainability 12:116610.3390/su12031166 Search in Google Scholar

[18] Alija S, Torrijo FJ, Quinta-Ferreira M (2014) Study of the unexpected collapse of Ampurdan tunnel (Spain) using finite element model. Bull Eng Geol Environ 73(2):451–463. https://doi.org/10.1007/s10064-013-0534-z Search in Google Scholar

[19] Jiading Wang, Youjiang Zeng, Yuanjun Xu & Kaiqiang Feng (2017) Analysis of the influence of tunnel portal section construction on slope stability, Geology, Ecology, and Landscapes, 1:1, 56-65, DOI: 10.1080/24749508.2017.130106210.1080/24749508.2017.1301062 Search in Google Scholar

[20] Cao, L. H., & Lu, Z. L. (2013). Tunnel entrance slope stability analysis. Foreign Highway, 04, 244–246. Search in Google Scholar

[21] Wang, F. (2013). The construction technology of shallow buried bias tunnel hole entrance section. Shanxi Architecture, 39, 152–153. Search in Google Scholar

[22] Wang X, Chen J, Zhang Y, Xiao M (2019) Seismic responses and damage mechanisms of the structure in the portal section of a hydraulic tunnel in rock. Soil Dyn Earthq Eng 123:205–21610.1016/j.soildyn.2019.04.026 Search in Google Scholar

[23] Rao K, Singh T (2017) Two-dimensional finite element based parametric analysis of South portal slope, Rohtang Tunnel, India. Proc Eng 173:1330–133310.1016/j.proeng.2016.12.172 Search in Google Scholar

[24] Kaya A, Karaman K, Bulut F (2017) Geotechnical investigations and remediation design for failure of tunnel portal section: a case study in northern Turkey. J Mount Sci 14(6):1140–116010.1007/s11629-016-4267-x Search in Google Scholar

[25] Genis¸ M (2010) Assessment of the dynamic stability of the portals of the Dorukhan tunnel using numerical analysis. Int J Rock Mech Min Sci 47:1231–124110.1016/j.ijrmms.2010.09.013 Search in Google Scholar

[26] Khan RMA, Mad Z, Jo B (2019) Tunnel portal construction using sequential excavation method: a case study, MATEC web of conferences 138, 04002 (2017) EACEF 2017. Acta Polytech 59(5):435–44710.1051/matecconf/201713804002 Search in Google Scholar

[27] Farhad Farhadi Ayoubloua, Majid Taromib and Abbas Eftekharic. TUNNEL PORTAL INSTABILITY IN LANDSLIDE AREA AND REMEDIAL SOLUTION: A CASE STUDY. Acta Polytechnica 59(5):435–447, 2019. DOI:10.14311/AP.2019.59.043510.14311/AP.2019.59.0435 Search in Google Scholar

[28] Emad, M.Z., Khan, M.U., Raza, M.A. et al. Optimum Design of Half Tunnels for Transportation in the Himalayas. Transp. Infrastruct. Geotech. (2021). https://doi.org/10.1007/s40515-021-00162-x Search in Google Scholar

[29] Panji M, Koohsari H, Adampira M, Alielahi H, Marnani JA. Stability analysis of shallow tunnels subjected to eccentric loads by a boundary element method. Journal of Rock Mechanics and Geotechnical Engineering 2016;8(4):480-8.10.1016/j.jrmge.2016.01.006 Search in Google Scholar

[30] Addenbrooke T, Potts DM. Static response of reinforced soil retaining walls with nonuniform reinforcement. International Journal of Geomechanics 2001;1(2): 249-71.10.1061/(ASCE)1532-3641(2001)1:2(249) Search in Google Scholar

[31] Houssam KHELALFA, Nabile OSMANE, Mohammed BOUATIA. Excavation Stability Study with Inclination of Cut Slopes at 45° and 90° in the long-term (LT) and short-term (ST) States: A Case Study. Indian Journal of Engineering, 2020, 17(48), 470-482 Search in Google Scholar

[32] Chehade FH, Shahrour I. Numerical analysis of the interaction between twintunnels: influence of the relative position and construction procedure. Tunnelling and Underground Space Technology 2008;23(2):210e4.10.1016/j.tust.2007.03.004 Search in Google Scholar

[33] Zhang ZX, Xu Y, Kulatilake PHSW, Huang X. Physical model test and numerical analysis on the behavior of stratified rock masses during underground excavation. International Journal of Rock Mechanics and Mining Sciences 2012;49: 134-47.10.1016/j.ijrmms.2011.11.001 Search in Google Scholar

[34] Sylvanus Sebbeh-Newton, Shaib Abdulazeez Shehu, Prosper Ayawah, Azupuri A. Kaba & Hareyani Zabidi | (2021) Analytical and numerical assessment of a preliminary support design – a case study, Cogent Engineering, 8:1, 1869367, DOI: 10.1080/23311916.2020.186936710.1080/23311916.2020.1869367 Search in Google Scholar

[35] Peng, S. J., Ma, Y., Wang, J. D., & Xie, W. L. (2013). Application of fuzzy information optimization technology on analysis of loess landslide stability. Applied Mechanics and Materials, 321–324, 2389–2395.10.4028/www.scientific.net/AMM.321-324.2389 Search in Google Scholar

[36] Yoo C (2009) Performance of multi-faced tunnelling–A 3D numerical investigation. Tunn Undergr Space Technol 24(5):562–573. https://doi.org/10.1016/j.tust.2009.02.005 Search in Google Scholar

[37] Karakus M, Fowell RJ (2006) 2-D and 3-D finite element analyses for the settlement due to soft ground tunnelling. Tunn Undergr Space Technol 21(3):392–39210.1016/j.tust.2005.12.203 Search in Google Scholar

[38] A. Ghadimi Chermahini & H. Tahghighi (2019) Numerical finite element analysis of underground tunnel crossing an active reverse fault: a case study on the Sabzkouh segmental tunnel, Geomechanics and Geoengineering, 14:3, 155-166, DOI: 10.1080/17486025.2019.157332310.1080/17486025.2019.1573323 Search in Google Scholar

[39] Chu B, Lin Y. Mechanical behavior of a twin-tunnel in multi-layered formations. Tunnelling and Underground Space Technology 2007;22(3):351e62.10.1016/j.tust.2006.06.003 Search in Google Scholar

[40] Zheng G, Du Y, Cheng X, Diao Y, Deng X, Wang F (2017) Characteristics and prediction methods for tunnel deformations induced by excavations. Geomech Eng 12(3):361–39710.12989/gae.2017.12.3.361 Search in Google Scholar

[41] Ou CY, Hsieh PG (2011) A simplified method for predicting ground settlement profiles induced by excavation in soft clay. Comput Geotech 38(8):987–99710.1016/j.compgeo.2011.06.008 Search in Google Scholar

[42] Terzaghi K, Peck RB. Soil mechanics engineering practice. John Wiley; 1948. Search in Google Scholar

[43] Peck RB. Advantages and limitations of the observational method in applied soil mechanics. Géotechnique 1969;19(2):171-87.10.1680/geot.1969.19.2.171 Search in Google Scholar

[44] Spross J, Johansson F. When is the observational method in geotechnical engineering favorable? Structural Safety 2017;66:17e26.10.1016/j.strusafe.2017.01.006 Search in Google Scholar

[45] Sakurai S, Akutagawa S, Takeuchi K, Shinji M, Shimizu N. Back analysis for tunnel engineering as a modern observational method. Tunnelling and Underground Space Technology 2003;18(2e3):185-96.10.1016/S0886-7798(03)00026-9 Search in Google Scholar

[46] Chapman T, Green G. Observational method looks set to cut city building costs. Proceedings of the Institution of Civil Engineers e Civil Engineering 2004;157(3):125-33.10.1680/cien.2004.157.3.125 Search in Google Scholar

[47] Finno RJ, Calvello M. Supported excavations: observational method and inverse modeling. Journal of Geotechnical and Geoenvironmental Engineering 2005;131(7):826-36.10.1061/(ASCE)1090-0241(2005)131:7(826) Search in Google Scholar

[48] Fuentes R, Pillai A, Ferreira P. Lessons learnt from a deep excavation for future application using the observational method. Journal of Rock Mechanics and Geotechnical Engineering 2018;10(3):468-85.10.1016/j.jrmge.2017.12.004 Search in Google Scholar

[49] Glass PR, Powderham AJ. Application of the observational method at the limehouse link. Géotechnique 1994;44(4):665-79.10.1680/geot.1994.44.4.665 Search in Google Scholar

[50] Peck RB. The observational method can be simple. Proceedings of the Institution of Civil Engineers e Geotechnical Engineering 2001;149(2):71-4.10.1680/geng.2001.149.2.71 Search in Google Scholar

[51] L Joleaud; M Ferrand; E Ficheur; Algeria. S Carte géologique de l’Algérie 1:50,000. 74, El Aria. ervice de la carte géologique de l’Algérie., 1908. Search in Google Scholar

[52] Wildi, W. (1983) La chaine tello-rifaine (Algérie, Maroc, Tunisie): Structure, Strati-Graphie et évolution du Trias au Miocène. Revue de Géologie dynamique et de Géographie Physique, 24, 201-297 Search in Google Scholar

[53] Hamou Djellit, Évolution tectono-métamorphique du socle Kabyle et polarité de mise en place des nappes de flysch en petite Kabylie occidentale (Algérie), Supported in 1987 at Paris 11 university, in partnership with University of Paris-Sud. Faculty of Sciences of Orsay (Essonne). Search in Google Scholar

[54] Alhussein A. Basheer, Khamis Q. Mansour & Mohammed A. Abdalla (2014) Geophysical investigation to reveal the groundwater condition at new Borg El-Arab industrial city, Egypt, NRIAG Journal of Astronomy and Geophysics, 3:2, 117-129, DOI: 10.1016/j.nrjag.2014.08.00210.1016/j.nrjag.2014.08.002 Search in Google Scholar

[55] C. A. Moreira, M. M. Lapola & Alan Carrara. 2016. Comparative analyzes among electrical resistivity tomography arrays in the characterization of flow structure in free aquifer. Geofísica internacional 55 no.2 México abr./jun.2016 versión impresa.10.22201/igeof.00167169p.2016.55.2.1716 Search in Google Scholar

[56] C. C. Okpoli. 2013. Sensitivity and Resolution Capacity of Electrode Configurations. Department of Geology and Applied Geophysics, Faculty of Science, Adekunle Ajasin University, PMB 001, Akungba-Akoko,Ondo State, Nigeria. Hindawi Publishing Corporation International Journal of Geophysics 2013, Article ID 608037, p.3. http://dx.doi.org/10.1155/2013/608037.10.1155/2013/608037 Search in Google Scholar

[57] Loke, M. H. (1997) Rapid 2D resistivity inversion using the least-squares method RES2DINV Program; Manual: Penang, Malaysia. Search in Google Scholar

[58] McMECHAN, G.A. 1983, Migration by Extrapolation of Time-Dependent Boundary Values, Geophysical Prospecting 31,413-420.10.1111/j.1365-2478.1983.tb01060.x Search in Google Scholar

[59] Ivansson S. (1987) Crosshole transmission tomography. In: Nolet G. (eds) Seismic Tomography. Seismology and Exploration Geophysics, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3899-1_7 Search in Google Scholar

[60] N. D. Bregman, R. C. Bailey, and C. H. Chapman, (1989), “Crosshole seismic tomography,” GEOPHYSICS 54: 200-21510.1190/1.1442644 Search in Google Scholar

[61] Pratt, R. and Sams, M. (1996). Reconciliation of crosshole seismic velocities with well information in a layered sedimentary environment. Geophysics, 61(2), 549-560. http://dx.doi.org/10.1190/1.144398110.1190/1.1443981 Search in Google Scholar

[62] Joe Wong, (2000), “Crosshole seismic imaging for sulfide orebody delineation near Sudbury, Ontario, Canada,” GEOPHYSICS 65: 1900-1907. https://doi.org/10.1190/1.1444874 Search in Google Scholar

[63] Thurber, C. (2015). Treatise on Geophysics || Theory and Observations - Seismic Tomography and Inverse Methods., (), 307–337. doi:10.1016/b978-0-444-53802-4.00009-910.1016/B978-0-444-53802-4.00009-9 Search in Google Scholar

[64] Zhao D. (2015) Methodology of Seismic Tomography. In: Multiscale Seismic Tomography. Springer Geophysics. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55360-1_2 Search in Google Scholar

[65] FHWA. 1998. Manual for design and construction monitoring of soil nail walls. US Department of Transportation, Washington, D.C. FHWA-SA-96-069R. Search in Google Scholar

[66] A.A.S.H.T.O.2002. «Standard Specifications for Highway Bridges». ISBN: 9781560511496 Search in Google Scholar

eISSN:
2286-2218
Idioma:
Inglés