Acceso abierto

Accuracy assessment of high and ultra high-resolution combined GGMs, and recent satellite-only GGMs – Case studies of Poland and Ethiopia


Cite

Alothman, A., Godah, W., and Elsaka, B. (2016). Gravity field anomalies from recent GOCE satellite-based geopotential models and terrestrial gravity data: a comparative study over Saudi Arabia. Arabian Journal of Geosciences, 9(5), doi:10.1007/s12517-016-2393-y. Search in Google Scholar

Barthelmes, F. (2009). Definition of functionals of the geopotential and their calculation from spherical harmonic models: theory and formulas used by the calculation service of the International Centre for Global Earth Models (ICGEM). Technical report, Deutsches GeoForschungsZentrum GFZ. Search in Google Scholar

Bedada, T. B. (2010). Absolute geopotential height system for Ethiopia. PhD thesis, The University of Edinburgh. Search in Google Scholar

Bennett, R. A. (2007). Instantaneous slip rates from geology and geodesy. Geophysical Journal International, 169(1):19–28, doi:10.1111/j.1365-246x.2007.03331.x. Search in Google Scholar

Brockmann, J. M., Schubert, T., and Schuh, W.-D. (2021). An improved model of the Earth’s static gravity field solely derived from reprocessed GOCE data. Surveys in Geophysics, 42:277–316, doi:10.1007/s10712-020-09626-0. Search in Google Scholar

Bruinsma, S. L., Förste, C., Abrikosov, O., Lemoine, J., Marty, J., Mulet, S., Rio, M., and Bonvalot, S. (2014). ESA’s satellite-only gravity field model via the direct approach based on all GOCE data. Geophysical Research Letters, 41(21):7508–7514, doi:10.1002/2014gl062045. Search in Google Scholar

Bucha, B. and Janák, J. (2014). A MATLAB-based graphical user interface program for computing functionals of the geopotential up to ultra-high degrees and orders: Efficient computation at irregular surfaces. Computers & Geosciences, 66:219–227, doi:10.1016/j.cageo.2014.02.005. Search in Google Scholar

Drinkwater, M. R., Floberghagen, R., Haagmans, R., Muzi, D., and Popescu, A. (2003). VII: Closing Session: GOCE: ESA’s first Earth explorer core mission. Space Science Reviews, 108(1/2):419–432, doi:10.1023/a:1026104216284. Search in Google Scholar

Dykowski, P., Krynski, J., and Sękowski, M. (2015). The A10 Gravimeter Total Uncertainty Budget Estimation: A Case Study Using the A10-020, pages 219–225. Springer International Publishing, doi:10.1007/1345_2015_98. Search in Google Scholar

Flechtner, F., Neumayer, K.-H., Dahle, C., Dobslaw, H., Fagiolini, E., Raimondo, J.-C., and Güntner, A. (2015). What can be expected from the GRACE-FO laser ranging interferometer for Earth science applications? Surveys in Geophysics, 37(2):453–470, doi:10.1007/s10712-015-9338-y. Search in Google Scholar

Forsberg, R. (1984). A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modelling. Technical Report 355, Ohio State University, Department of Geodetic Science and Surveying. Search in Google Scholar

Forsberg, R. and Olesen, A. V. (2010). Airborne Gravity Field Determination, pages 83–104. Springer Berlin Heidelberg, doi:10.1007/978-3-642-11741-1_3. Search in Google Scholar

Fukushima, T. (2012). Recursive computation of finite difference of associated Legendre functions. Journal of Geodesy, 86(9):745–754, doi:10.1007/s00190-012-0553-8. Search in Google Scholar

Förste, C., Bruinsma, S., Abrikosov, O., Lemoine, J.-M., Marty, J. C., Flechtner, F., Balmino, G., Barthelmes, F., and Biancale, R. (2014). EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. GFZ Data Services. Search in Google Scholar

Godah, W. and Krynski, J. (2015). Comparison of GGMs based on one year GOCE observations with the EGM08 and terrestrial data over the area of Sudan. International Journal of Applied Earth Observation and Geoinformation, 35:128–135, doi:10.1016/j.jag.2013.11.003. Search in Google Scholar

Godah, W., Krynski, J., and Szelachowska, M. (2015). On the accuracy assessment of the consecutive releases of GOCE-based GGMs over the area of Poland. Newtons Bulletin. Assessment of GOCE Geopotential Models, 5:49–62. Search in Google Scholar

Godah, W., Krynski, J., and Szelachowska, M. (2018a). The use of absolute gravity data for the validation of Global Geopotential Models and for improving quasigeoid heights determined from satellite-only Global Geopotential Models. Journal of Applied Geophysics, 152:38–47, doi:10.1016/j.jappgeo.2018.03.002. Search in Google Scholar

Godah, W. and Kryński, J. (2013). Evaluation of recent goce geopotential models over the area of Poland. Acta Geodynamica et Geomaterialia, 171(10):379–386, doi:10.13168/agg.2013.0037. Search in Google Scholar

Godah, W., Szelachowska, M., and Krynski, J. (2014). Accuracy assessment of GOCE-based geopotential models and their use for modelling the gravimetric quasigeoid - A case study for Poland. Geodesy and Cartography, 63(1):3–24, doi:10.2478/geocart-2014-0001. Search in Google Scholar

Godah, W. H., Gedamu, A. A., and Bedada, T. B. (2018b). On the contribution of dedicated gravity satellite missions to the modelling of the Earth gravity field – A case study of Ethiopia and Uganda in East Africa. Geoinformation Issues, 10(1):5–15, doi:10.34867/GI.2018.1. Search in Google Scholar

Goyal, R., Dikshit, O., and Balasubramania, N. (2019). Evaluation of global geopotential models: a case study for India. Survey review, 51(368):402–412, doi:10.1080/00396265.2018.1468537. Search in Google Scholar

Gruber, T., Bamber, J. L., Bierkens, M. F. P., Dobslaw, H., Murböck, M., Thomas, M., van Beek, L. P. H., van Dam, T., Vermeersen, L. L. A., and Visser, P. N. A. M. (2011). Simulation of the time-variable gravity field by means of coupled geophysical models. Earth System Science Data, 3(1):19–35, doi:10.5194/essd-3-19-2011. Search in Google Scholar

Heiskanen, W. A. and Moritz, H. (1967). Physical geodesy. W. H. Freeman & Co Ltd. Search in Google Scholar

Hirt, C., Gruber, T., and Featherstone, W. E. (2011). Evaluation of the first GOCE static gravity field models using terrestrial gravity, vertical deflections and EGM2008 quasigeoid heights. Journal of Geodesy, 85(10):723–740, doi:10.1007/s00190-011-0482-y. Search in Google Scholar

Ince, E. S., Barthelmes, F., Reißland, S., Elger, K., Förste, C., Flechtner, F., and Schuh, H. (2019). ICGEM – 15 years of successful collection and distribution of global gravitational models, associated services, and future plans. Earth System Science Data, 11(2):647–674, doi:10.5194/essd-11-647-2019. Search in Google Scholar

Krynski, J. and Kloch, G. (2009). Evaluation of the performance of the new EGM08 global geopotential model over Poland. Geoin-formation Issues, 1(1):7–17. Search in Google Scholar

Lambeck, K. (1988). Geophysical geodesy – The slow deformations of the Earth. Research supported by CNES and Universite de Paris VI. Oxford and New York. Search in Google Scholar

Liang, W., Li, J., Xu, X., Zhang, S., and Zhao, Y. (2020). A high-resolution Earth’s gravity field model SGG-UGM-2 from GOCE, GRACE, satellite altimetry, and EGM2008. Engineering, 6(8):860–878, doi:10.1016/j.eng.2020.05.008. Search in Google Scholar

Moritz, H. (2000). Geodetic Reference System 1980. Journal of Geodesy, 74(1):128–133, doi:10.1007/s001900050278. Search in Google Scholar

Odera, P. A. (2020). Evaluation of the recent high-degree combined global gravity-field models for geoid modelling over Kenya. Geodesy and Cartography, 46(2):48–54, doi:10.3846/gac.2020.10453. Search in Google Scholar

Odera, P. A. and Fukuda, Y. (2017). Evaluation of GOCE-based global gravity field models over Japan after the full mission using free-air gravity anomalies and geoid undulations. Earth, Planets and Space, 69(1), doi:10.1186/s40623-017-0716-1. Search in Google Scholar

Pavlis, N. K., Holmes, S. A., Kenyon, S. C., and Factor, J. K. (2012). The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research: Solid Earth, 117(B4), doi:10.1029/2011jb008916. Search in Google Scholar

Pham, H. T., Claessens, S., Kuhn, M., and Awange, J. (2023). Performance evaluation of high/ultra-high-degree global geopotential models over Vietnam using GNSS/leveling data. Geodesy and Geodynamics, doi:10.1016/j.geog.2023.03.002. Search in Google Scholar

Reigber, C., Lühr, H., and Schwintzer, P. (2002). CHAMP mission status. Advances in Space Research, 30(2):129–134, doi:10.1016/s0273-1177(02)00276-4. Search in Google Scholar

Rummel, R., Yi, W., and Stummer, C. (2011). GOCE gravitational gradiometry. Journal of Geodesy, 85(11):777–790, doi:10.1007/s00190-011-0500-0. Search in Google Scholar

Tapley, B. D., Bettadpur, S., Ries, J. C., Thompson, P. F., and Watkins, M. M. (2004). GRACE measurements of mass variability in the Earth system. Science, 305(5683):503–505, doi:10.1126/science.1099192. Search in Google Scholar

Tscherning, C. (1992). The GRAVSOFT package for geoid determination. In Proc 1st IAG Continental Workshop of the Geoid in Europe, Prague, 1992. Search in Google Scholar

Wu, Y., He, X., Luo, Z., and Shi, H. (2021). An assessment of recently released high-degree global geopotential models based on heterogeneous geodetic and ocean data. Frontiers in Earth Science, 9, doi:10.3389/feart.2021.749611. Search in Google Scholar

Xu, X., Li, J., Zhao, Y., and Wei, H. (2023). A GOCE only gravity model GOSG02S based on the SGG and SST observations. GFZ Data Services. Search in Google Scholar

Yuan, H., Wan, X., Wu, Y., Peng, Y., and Guo, Z. (2022). Evaluation of ultra-high degree gravity field models: a case study of Eastern Tibetan Plateau and Sichuan Province. Terrestrial, Atmospheric and Oceanic Sciences, 33(1), doi:10.1007/s44195-022-00014-2. Search in Google Scholar

Zhao, Y., Li, J., Xu, X., and Su, Y. (2023). WHU-SWPU-GOGR2022S: A combined gravity model of GOCE and GRACE. GFZ Data Services. Search in Google Scholar

Zingerle, P., Brockmann, J. M., Pail, R., Gruber, T., and Willberg, M. (2019). The polar extended gravity field model TIM_R6e. GFZ Data Services. Search in Google Scholar

Zingerle, P., Pail, R., Gruber, T., and Oikonomidou, X. (2020). The combined global gravity field model XGM2019e. Journal of Geodesy, 94(7), doi:10.1007/s00190-020-01398-0. Search in Google Scholar

eISSN:
2391-8152
Idioma:
Inglés
Calendario de la edición:
Volume Open
Temas de la revista:
Computer Sciences, other, Geosciences, Geodesy, Cartography and Photogrammetry