This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Berk, S. and Ferlan, M. (2018). Accurate area determination in the cadaster: Case study of slovenia. Cartography and Geographic Information Science, 45(1):1–17, doi:10.1080/15230406.2016.1217789.BerkS.FerlanM.2018Accurate area determination in the cadaster: Case study of sloveniaCartography and Geographic Information Science45111710.1080/15230406.2016.1217789Open DOISearch in Google Scholar
Bogaert, P., Delincé, J., and Kay, S. (2005). Assessing the error of polygonal area measurements: a general formulation with applications to agriculture. Measurement Science and Technology, 16(5):1170, doi:10.1088/0957-0233/16/5/017.BogaertP.DelincéJ.KayS.2005Assessing the error of polygonal area measurements: a general formulation with applications to agricultureMeasurement Science and Technology165117010.1088/0957-0233/16/5/017Open DOISearch in Google Scholar
Danielsen, J. (1989). The area under the geodesic. Survey review, 30(232):61–66, doi:10.1179/sre.1989.30.232.61.DanielsenJ.1989The area under the geodesicSurvey review30232616610.1179/sre.1989.30.232.61Open DOISearch in Google Scholar
Frank, A. U. (2008). Analysis of dependence of decision quality on data quality. Journal of Geographical Systems, 10(1):71–88, doi:10.1007/s10109-008-0059-3.FrankA. U.2008Analysis of dependence of decision quality on data qualityJournal of Geographical Systems101718810.1007/s10109-008-0059-3Open DOISearch in Google Scholar
Freire, R. R. and Vasconcellos, J. (2010). Geodetic or rhumb line polygon area calculation over the wgs-84 datum ellipsoid. In FIG Congress, 11–16 April, Sydney, Australia, pages 11–16.FreireR. R.VasconcellosJ.2010Geodetic or rhumb line polygon area calculation over the wgs-84 datum ellipsoidInFIG Congress11–16 AprilSydney, Australia1116Search in Google Scholar
Gillissen, I. (1993). Area computation of a polygon on an ellipsoid. Survey Review, 32(248):92–98, doi:10.1179/sre.1993.32.248.92.GillissenI.1993Area computation of a polygon on an ellipsoidSurvey Review32248929810.1179/sre.1993.32.248.92Open DOISearch in Google Scholar
Grossmann, W. (1976). Geodatische Rechnungen und Abbildungen in der Landesvermessung. Stuttgart: Wittwer.GrossmannW.1976Geodatische Rechnungen und Abbildungen in der LandesvermessungStuttgartWittwerSearch in Google Scholar
Hejmanowska, B. and Woźniak, W. (2009). Influence of the number of measured parcel boundary points on the accuracy of land parcel area calculation. Archiwum Fotogrametrii, Kartografii i Teledetekcji, 20:123–133.HejmanowskaB.WoźniakW.2009Influence of the number of measured parcel boundary points on the accuracy of land parcel area calculationArchiwum Fotogrametrii, Kartografii i Teledetekcji20123133Search in Google Scholar
Karney, C. (2011). Geodesics on an ellipsoid of revolution – technical report. SRI International.KarneyC.2011Geodesics on an ellipsoid of revolution – technical reportSRI InternationalSearch in Google Scholar
Karney, C. F. (2013). Algorithms for geodesics. Journal of Geodesy, 87(1):43–55, doi:10.1007/s00190-012-0578-z.KarneyC. F.2013Algorithms for geodesicsJournal of Geodesy871435510.1007/s00190-012-0578-zOpen DOISearch in Google Scholar
Kimerling, A. J. (1984). Area computation from geodetic coordinates on the spheroid. Surveying and mapping, 44(4):343–351.KimerlingA. J.1984Area computation from geodetic coordinates on the spheroidSurveying and mapping444343351Search in Google Scholar
Koçak, E. (1985). Kartografya. Karadeniz Üniversitesi Basımevi, Trabzon.KoçakE.1985KartografyaKaradeniz Üniversitesi BasımeviTrabzonSearch in Google Scholar
Kundu, S. N. and Pradhan, B. (2003). Surface area processing in gis. In Proceedings of Map Asia 2003, 13–15th October, PWTC, Kuala Lumpur, Malaysia, pages 1–6.KunduS. N.PradhanB.2003Surface area processing in gisInProceedings of Map Asia 200313–15th OctoberPWTC, Kuala Lumpur, Malaysia16Search in Google Scholar
Lumban-Gaol, Y., Safi’i, A. N., Hartanto, P., and Rachma, T. R. (2019). Analysis on the effect of map projection system for area calculation. IPTEK Journal of Proceedings Series, (2):69–73, doi:10.12962/j23546026.y2019i2.5310.Lumban-GaolY.Safi’iA. N.HartantoP.RachmaT. R.2019Analysis on the effect of map projection system for area calculationIPTEK Journal of Proceedings Series2697310.12962/j23546026.y2019i2.5310Open DOISearch in Google Scholar
Navratil, G. and Feucht, R. (2008). Comprehensive quality description – the example of the area in the austrian cadastre. In Spatial Data Quality – Proceedings of the International Symposium on Spatial Data Quality, St. John's, 5–8 July, Canada, pages 197–209.NavratilG.FeuchtR.2008Comprehensive quality description – the example of the area in the austrian cadastreInSpatial Data Quality – Proceedings of the International Symposium on Spatial Data Quality, St. John's5–8 JulyCanada197209Search in Google Scholar
Setiawan, A. and Sediyono, E. (2020). Area calculation based on gadm geographic information system database. Telkomnika, 18(3):1416–1421, doi:10.12928/TELKOMNIKA.v18i3.14901.SetiawanA.SediyonoE.2020Area calculation based on gadm geographic information system databaseTelkomnika1831416142110.12928/TELKOMNIKA.v18i3.14901Open DOISearch in Google Scholar
Sindhuber, A., Bauer, M., Golias, C., Nemec, T., Ratzinger, M., Rauscher, G., and Weihs, T. (2004). INVEKOS-GIS – Ein Internet-GIS für Landwirte. AGIT, Salzburg, Austria, Wichmann.SindhuberA.BauerM.GoliasC.NemecT.RatzingerM.RauscherG.WeihsT.2004INVEKOS-GIS – Ein Internet-GIS für LandwirteAGITSalzburg, Austria, WichmannSearch in Google Scholar
Sjöberg, L. E. (2007). Precise determination of the clairaut constant in ellipsoidal geodesy. Survey Review, 39(303):81–86, doi:10.1179/003962607X165014.SjöbergL. E.2007Precise determination of the clairaut constant in ellipsoidal geodesySurvey Review39303818610.1179/003962607X165014Open DOISearch in Google Scholar
Tseng, W.-K., Guo, J.-L., and Liu, C.-P. (2015). The geometric algorithm of inverse and direct problems with an area solution for the great elliptic arcs. Journal of Marine Science and Technology, 23(4):481–490.TsengW.-K.GuoJ.-L.LiuC.-P.2015The geometric algorithm of inverse and direct problems with an area solution for the great elliptic arcsJournal of Marine Science and Technology234481490Search in Google Scholar
Vincenty, T. (1975). Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations. Survey review, 23(176):88–93, doi:10.1179/sre.1975.23.176.88.VincentyT.1975Direct and inverse solutions of geodesics on the ellipsoid with application of nested equationsSurvey review23176889310.1179/sre.1975.23.176.88Open DOISearch in Google Scholar
Yildirim, F. and Kaya, A. (2008). Selecting map projections in minimizing area distortions in gis applications. Sensors, 8(12):7809–7817, doi:10.3390/s8127809.YildirimF.KayaA.2008Selecting map projections in minimizing area distortions in gis applicationsSensors8127809781710.3390/s8127809379099027873959Open DOISearch in Google Scholar
Zhang, Y., Zhang, L.-n., Yang, C.-d., Bao, W.-d., and Yuan, X.-x. (2011). Surface area processing in gis for different mountain regions. Forestry Studies in China, 13(4):311–314, doi:10.1007/s11632-013-0403-7.ZhangY.ZhangL.-n.YangC.-d.BaoW.-d.YuanX.-x.2011Surface area processing in gis for different mountain regionsForestry Studies in China13431131410.1007/s11632-013-0403-7Open DOISearch in Google Scholar