Acceso abierto

Topographic surface modelling using raster grid datasets by GMT: example of the Kuril–Kamchatka Trench, Pacific Ocean


Cite

Altuntas, C. (2019). Urban area change visualization and analysis using high density spatial data from time series aerial images. Reports on Geodesy and Geoinformatics 107:1– 12, doi:10.2478/rgg-2019-0001.AltuntasC.2019Urban area change visualization and analysis using high density spatial data from time series aerial imagesReports on Geodesy and Geoinformatics10711210.2478/rgg-2019-0001Open DOISearch in Google Scholar

Avdeiko, G. P., Savelyev, D. P., Palueva, A. A., and Popruzhenko, S. V. (2007). Evolution of the Kuril- Kamchatka volcanic arcs and dynamics of the Kamchatka-Aleutian junction. Geophysical Monograph Series American Geophysical Union 172:37–55, doi:10.1029/172GM04.AvdeikoG. P.SavelyevD. P.PaluevaA. A.PopruzhenkoS. V.2007Evolution of the Kuril- Kamchatka volcanic arcs and dynamics of the Kamchatka-Aleutian junctionGeophysical Monograph Series American Geophysical Union172375510.1029/172GM04Open DOISearch in Google Scholar

Banasik, P. and Bujakowski, K. (2017). The Use of Quasigeoid in Leveling Through Terrain Obstacles. Reports on Geodesy and Geoinformatics 104:57–64, doi:10.1515/rgg-2017-0015.BanasikP.BujakowskiK.2017The Use of Quasigeoid in Leveling Through Terrain ObstaclesReports on Geodesy and Geoinformatics104576410.1515/rgg-2017-0015Open DOISearch in Google Scholar

Barr, I. D. and Spagnolo, M. (2013). Palaeoglacial and palaeoclimatic conditions in the NW Pacific, as revealed by a morphometric analysis of cirques upon the Kamchatka Peninsula. Geomorphology 192:15–29, doi:10.1016/j.geomorph.2013.03.011.BarrI. D.SpagnoloM.2013Palaeoglacial and palaeoclimatic conditions in the NW Pacific, as revealed by a morphometric analysis of cirques upon the Kamchatka PeninsulaGeomorphology192152910.1016/j.geomorph.2013.03.011Open DOISearch in Google Scholar

Bazan-Krzywoszanska, A. and Bereta, M. (2018). The use of urban indicators in forecasting a real estate value with the use of deep neural network. Reports on Geodesy and Geoinformatics 106:25–34, doi:10.2478/rgg-2018-0011.Bazan-KrzywoszanskaA.BeretaM.2018The use of urban indicators in forecasting a real estate value with the use of deep neural networkReports on Geodesy and Geoinformatics106253410.2478/rgg-2018-0011Open DOISearch in Google Scholar

Belkin, I. M., Cornillon, P. C., and Sherman, K. (2009). Fronts in large marine ecosystems. Progress in Oceanography 81:223–236, doi:10.1016/j.pocean.2009.04.015.BelkinI. M.CornillonP. C.ShermanK.2009Fronts in large marine ecosystemsProgress in Oceanography8122323610.1016/j.pocean.2009.04.015Open DOISearch in Google Scholar

Boutelier, D. and Oncken, O. (2011). 3-D thermo-mechanical laboratory modeling of plate tectonics: modeling scheme, technique and first experiments. Journal of Geophysical Research Atmospheres, Solid Earth 2(1):35–51, doi:10.5194/se-2-35-2011.BoutelierD.OnckenO.20113-D thermo-mechanical laboratory modeling of plate tectonics: modeling scheme, technique and first experimentsJournal of Geophysical Research Atmospheres, Solid Earth21355110.5194/se-2-35-2011Open DOISearch in Google Scholar

Brandt, A., Alalykina, I., Fukumori, H., Golovand, O., Kniesz, K., Lavrenteva, A., Lörz, A.-N., Malyutina, M., Philipps-Bussau, K., and Stransky, B. (2018). First insights into macrofaunal composition from the SokhoBio expedition T (Sea of Okhotsk, Bussol Strait and northern slope of the Kuril-Kamchatka Trench). Deep-Sea Research Part II 154:106–120, doi:10.1016/j.dsr2.2018.05.022.BrandtA.AlalykinaI.FukumoriH.GolovandO.KnieszK.LavrentevaA.LörzA.-N.MalyutinaM.Philipps-BussauK.StranskyB.2018First insights into macrofaunal composition from the SokhoBio expedition T (Sea of Okhotsk, Bussol Strait and northern slope of the Kuril-Kamchatka Trench)Deep-Sea Research Part II15410612010.1016/j.dsr2.2018.05.022Open DOISearch in Google Scholar

Brown, C. J., Sameoto, J. A., and Smith, S. J. (2012). Multiple methods, maps, and management applications: Purpose made seafloor maps in support of ocean management. Journal of Sea Research 72:1–13, doi:10.5194/se-2-35-2011.BrownC. J.SameotoJ. A.SmithS. J.2012Multiple methods, maps, and management applications: Purpose made seafloor maps in support of ocean managementJournal of Sea Research7211310.5194/se-2-35-2011Open DOISearch in Google Scholar

Chen, J. and King, S. D. (1998). The influence of temperature and depth dependent viscosity on geoid and topography profiles from models of mantle convection. Physics of the Earth and Planetary Interiors 106(1–2):75–91, doi:10.1016/S0031-9201(97)00110-6.ChenJ.KingS. D.1998The influence of temperature and depth dependent viscosity on geoid and topography profiles from models of mantle convectionPhysics of the Earth and Planetary Interiors1061–2759110.1016/S0031-9201(97)00110-6Open DOISearch in Google Scholar

Cortés-Aranda, J., editor (2018). Rapid Late Pleistocene uplift in the Mejillones Peninsula, northern Chile subduction zone (23.5S): Insights from 10Be dated marine abrasion terraces. volume 4 of 5 Possidi, Greece.Cortés-ArandaJ.2018Rapid Late Pleistocene uplift in the Mejillones Peninsula, northern Chile subduction zone (23.5S): Insights from 10Be dated marine abrasion terracesvolume 4of 5Possidi, GreeceSearch in Google Scholar

Danovaro, R., Della Croce, N., Dell’Anno, A., and Pusceddu, A. (2003). A depocenter of organic matter at 7800 m depth in the SE Pacific Ocean. Deep-Sea Research Part I 50:1411–1420, doi:10.1016/j.dsr.2003.07.001.DanovaroR.Della CroceN.Dell’AnnoA.PuscedduA.2003A depocenter of organic matter at 7800 m depth in the SE Pacific OceanDeep-Sea Research Part I501411142010.1016/j.dsr.2003.07.001Open DOISearch in Google Scholar

ESRI Team, E. (2010). ESRI ArcGIS ESRI, Redlands, CA, U.S.A.ESRI TeamE.2010ESRI ArcGISESRIRedlands, CA, U.S.ASearch in Google Scholar

Feng, W., Samsonov, S., Almeida, R., Yassaghi, A., Li, J., Qiu, Q., Li, P., and Zheng, W. (2018). Geodetic Constraints of the 2017 Mw7.3 Sarpol Zahab, Iran Earthquake, and Its Implications on the Structure and Mechanics of the Northwest Zagros Thrust-Fold Belt. Geophysical Research Letter 45(14):1– 9, doi:10.1029/2018GL078577.FengW.SamsonovS.AlmeidaR.YassaghiA.LiJ.QiuQ.LiP.ZhengW.2018Geodetic Constraints of the 2017 Mw7.3 Sarpol Zahab, Iran Earthquake, and Its Implications on the Structure and Mechanics of the Northwest Zagros Thrust-Fold BeltGeophysical Research Letter45141910.1029/2018GL078577Open DOISearch in Google Scholar

Fischer, V., Elsner, N. O., Brenke, N., Schwabe, E., and Brandt, A. (2015). Plastic pollution of the Kuril–Kamchatka Trench area (NW pacific). Deep-Sea Research Part II 111:399–405, doi:10.1016/j.dsr2.2014.08.012.FischerV.ElsnerN. O.BrenkeN.SchwabeE.BrandtA.2015Plastic pollution of the Kuril–Kamchatka Trench area (NW pacific)Deep-Sea Research Part II11139940510.1016/j.dsr2.2014.08.012Open DOISearch in Google Scholar

Gallo, N. D., Cameron, J., Hardy, K., Fryer, P., Bartlett, D. H., and Levin, L. A. (2015). Submersible- and landerobserved community patterns in the Mariana and New Britain trenches: Influence of productivity and depth on epibenthic and scavenging communities. Deep-Sea Research Part I 99:119–133, doi:10.1016/j.dsr.2014.12.012.GalloN. D.CameronJ.HardyK.FryerP.BartlettD. H.LevinL. A.2015Submersible- and landerobserved community patterns in the Mariana and New Britain trenches: Influence of productivity and depth on epibenthic and scavenging communitiesDeep-Sea Research Part I9911913310.1016/j.dsr.2014.12.012Open DOISearch in Google Scholar

Gauger, S., Kuhn, G., Gohl, K., Feigl, T., Lemenkova, P., and Hillenbrand, C. (2007). Swath-bathymetric mapping. In Gohl, K., editor, The Expedition ANT-XXIII/4 of the Research Vessel Polarstern in 2006 pages 38–45. Alfred Wegener Institute für Polar- und Meeresforschung, doi:10013/epic.27102.d001.GaugerS.KuhnG.GohlK.FeiglT.LemenkovaP.HillenbrandC.2007Swath-bathymetric mappingGohlK.The Expedition ANT-XXIII/4 of the Research Vessel Polarstern in 20063845Alfred Wegener Institute für Polar- und Meeresforschung10013/epic.27102.d001Open DOISearch in Google Scholar

Harris, P. T. and Whiteway, T. (2011). Global distribution of large submarine canyons: Geomorphic differences between active and passive continental margins. Marine Geology 285:69–86, doi:10.1016/j.margeo.2011.05.008.HarrisP. T.WhitewayT.2011Global distribution of large submarine canyons: Geomorphic differences between active and passive continental marginsMarine Geology285698610.1016/j.margeo.2011.05.008Open DOISearch in Google Scholar

Hatori, T. (1971). Tsunami sources in Hokkaido and southern Kurile regions. Bulletin of the Earthquake Research Institute 49:63–75.HatoriT.1971Tsunami sources in Hokkaido and southern Kurile regionsBulletin of the Earthquake Research Institute496375Search in Google Scholar

Hayes, D. E. (1966). A geophysical investigation of the Peru-Chile Trench. Marine Geology 4(5):309–351, doi:10.1016/0025-3227(66)90038-7.HayesD. E.1966A geophysical investigation of the Peru-Chile TrenchMarine Geology4530935110.1016/0025-3227(66)90038-7Open DOISearch in Google Scholar

Hlotov, V., Hunina, A., Yurkiv, M., and Siejka, Z. (2019). Determining of correlation relationship between roll, pitch, and yaw for UAVs. Reports on Geodesy and Geoinformatics 107(5):13–18, doi:10.2478/rgg-2019-0002.HlotovV.HuninaA.YurkivM.SiejkaZ.2019Determining of correlation relationship between roll, pitch, and yaw for UAVsReports on Geodesy and Geoinformatics1075131810.2478/rgg-2019-0002Open DOISearch in Google Scholar

Ichino, M. C., Clark, M. R., Drazen, J. C., Jamieson, A., Jones, D. O. B., Martin, A. P., Rowden, A. A., Shank, T. M., Yancey, P. H., and Ruhl, H. A. (2015). The distribution of benthic biomass in hadal trenches: A modelling approach to investigate the effect of vertical and lateral organic matter transport to the seafloor. Deep-Sea Research Part I 100:21–33, doi:10.1016/j.dsr.2015.01.010.IchinoM. C.ClarkM. R.DrazenJ. C.JamiesonA.JonesD. O. B.MartinA. P.RowdenA. A.ShankT. M.YanceyP. H.RuhlH. A.2015The distribution of benthic biomass in hadal trenches: A modelling approach to investigate the effect of vertical and lateral organic matter transport to the seafloorDeep-Sea Research Part I100213310.1016/j.dsr.2015.01.010Open DOISearch in Google Scholar

Itoh, M., Kawamura, K., Kitahashi, T., Kojima, S., Katagiri, H., and Shimanaga, M. (2011). Bathymetric patterns of meiofaunal abundance and biomass associated with the Kuril and Ryukyu trenches, western North Pacific Ocean. Deep-Sea Research Part I 58:86–97, doi:10.1016/j.dsr.2010.12.004.ItohM.KawamuraK.KitahashiT.KojimaS.KatagiriH.ShimanagaM.2011Bathymetric patterns of meiofaunal abundance and biomass associated with the Kuril and Ryukyu trenches, western North Pacific OceanDeep-Sea Research Part I58869710.1016/j.dsr.2010.12.004Open DOISearch in Google Scholar

Janečka, K. (2019). Transformation of 3D geospatial data into CityGML - a case of Prague. Reports on Geodesy and Geoinformatics 107:41–48, doi:10.2478/rgg-2019-0005.JanečkaK.2019Transformation of 3D geospatial data into CityGML - a case of PragueReports on Geodesy and Geoinformatics107414810.2478/rgg-2019-0005Open DOISearch in Google Scholar

Klaučo, M., Gregorová, B., Stankov, U., Marković, V., and Lemenkova, P. (2013). Determination of ecological significance based on geostatistical assessment: a case study from the Slovak Natura 2000 protected area. Central European Journal of Geosciences 5(1):28–42, doi:10.2478/s13533-012-0120-0.KlaučoM.GregorováB.StankovU.MarkovićV.LemenkovaP.2013Determination of ecological significance based on geostatistical assessment: a case study from the Slovak Natura 2000 protected areaCentral European Journal of Geosciences51284210.2478/s13533-012-0120-0Open DOISearch in Google Scholar

Klaučo, M., Gregorová, B., Stankov, U., Marković, V., and Lemenkova, P. (2017). Land planning as a support for sustainable development based on tourism: A case study of Slovak Rural Region. Environmental Engineering and Management Journal 2(16):449–458, doi:10.30638/eemj.2017.045.KlaučoM.GregorováB.StankovU.MarkovićV.LemenkovaP.2017Land planning as a support for sustainable development based on tourism: A case study of Slovak Rural RegionEnvironmental Engineering and Management Journal21644945810.30638/eemj.2017.045Open DOISearch in Google Scholar

Lay, T., Kanamori, H., Ammon, C. J., Hutko, A. R., Furlong, K., and Rivera, L. (2009). The 2006-2007 Kuril Islands great earthquake sequence. Journal of Geophysical Research Atmospheres 114(B11308):1–31, doi:10.1029/2008JB006280.LayT.KanamoriH.AmmonC. J.HutkoA. R.FurlongK.RiveraL.2009The 2006-2007 Kuril Islands great earthquake sequenceJournal of Geophysical Research Atmospheres114B1130813110.1029/2008JB006280Open DOISearch in Google Scholar

Lee, J.-H., Kim, T., Pang, I.-C., and Moon, J.-H. (2018). 4DVAR data Assimilation with the Regional Ocean Modeling System (ROMS): Impact on the Water Mass Distributions in the Yellow Sea. Ocean Science Journal 53(2):165–178, doi:10.1007/s12601-018-0013-3.LeeJ.-H.KimT.PangI.-C.MoonJ.-H.20184DVAR data Assimilation with the Regional Ocean Modeling System (ROMS): Impact on the Water Mass Distributions in the Yellow SeaOcean Science Journal53216517810.1007/s12601-018-0013-3Open DOISearch in Google Scholar

Lemenkova, P. (2018a). Factor Analysis by R Programming to Assess Variability Among Environmental Determinants of the Mariana Trench. Turkish Journal of Maritime and Marine Sciences 4:146–155, doi:10.6084/m9.figshare.7358207.LemenkovaP.2018aFactor Analysis by R Programming to Assess Variability Among Environmental Determinants of the Mariana TrenchTurkish Journal of Maritime and Marine Sciences414615510.6084/m9.figshare.7358207Open DOISearch in Google Scholar

Lemenkova, P. (2018b). R scripting libraries for comparative analysis of the correlation methods to identify factors affecting Mariana Trench formation. Journal of Marine Technology and Environment 2:35–42, doi:10.6084/m9.figshare.7434167.LemenkovaP.2018bR scripting libraries for comparative analysis of the correlation methods to identify factors affecting Mariana Trench formationJournal of Marine Technology and Environment2354210.6084/m9.figshare.7434167Open DOISearch in Google Scholar

Lemenkova, P. (2019a). K-means Clustering in R Libraries {cluster} and {factoextra} for Grouping Oceanographic Data. International Journal of Informatics and Applied Mathematics 2:1–26, doi:10.6084/m9.figshare.9891203.LemenkovaP.2019aK-means Clustering in R Libraries {cluster} and {factoextra} for Grouping Oceanographic DataInternational Journal of Informatics and Applied Mathematics212610.6084/m9.figshare.9891203Open DOISearch in Google Scholar

Lemenkova, P. (2019b). Numerical Data Modelling and Classification in Marine Geology by the SPSS Statistics. International Journal of Engineering Technologies 5:90–99, doi:10.6084/m9.figshare.8796941.LemenkovaP.2019bNumerical Data Modelling and Classification in Marine Geology by the SPSS StatisticsInternational Journal of Engineering Technologies5909910.6084/m9.figshare.8796941Open DOISearch in Google Scholar

Lemenkova, P. (2019c). Processing oceanographic data by Python libraries NumPy, SciPy and Pandas. Aquatic Research 2:73–91, doi:10.3153/AR19009.LemenkovaP.2019cProcessing oceanographic data by Python libraries NumPy, SciPy and PandasAquatic Research2739110.3153/AR19009Open DOISearch in Google Scholar

Lemenkova, P. (2019d). Statistical Analysis of the Mariana Trench Geomorphology Using R Programming Language. Geodesy and Cartography 45:57–84, doi:10.3846/gac.2019.3785.LemenkovaP.2019dStatistical Analysis of the Mariana Trench Geomorphology Using R Programming LanguageGeodesy and Cartography45578410.3846/gac.2019.3785Open DOISearch in Google Scholar

Lemenkova, P. (2019e). Testing Linear Regressions by StatsModel Library of Python for Oceanological Data Interpretation. Aquatic Sciences and Engineering 34:51–60, doi:10.26650/ASE2019547010.LemenkovaP.2019eTesting Linear Regressions by StatsModel Library of Python for Oceanological Data InterpretationAquatic Sciences and Engineering34516010.26650/ASE2019547010Open DOISearch in Google Scholar

Lemenkova, P., Promper, C., and Glade, T. (2012). Economic Assessment of Landslide Risk for the Waidhofen a.d. Ybbs Region, Alpine Foreland, Lower Austria. In Eberhardt, E., Froese, C., Turner, A. K., and Leroueil, S., editors, Protecting Society Through Improved Understanding. Proceedings of the 11th International Symposium on Landslides and the 2nd North American Symposium on Landslides and Engineered Slopes pages 279–285. doi:10.6084/m9.figshare.7434230.LemenkovaP.PromperC.GladeT.2012Economic Assessment of Landslide Risk for the Waidhofen a.d. Ybbs Region, Alpine Foreland, Lower AustriaEberhardtE.FroeseC.TurnerA. K.LeroueilS.Protecting Society Through Improved Understanding. Proceedings of the 11th International Symposium on Landslides and the 2nd North American Symposium on Landslides and Engineered Slopes27928510.6084/m9.figshare.7434230Open DOISearch in Google Scholar

Lobkovsky, L. I. and Sorokhtin, O. G. (1979). Deformation of lithospheric plates in subduction zones. Oceanography and Geophysics of the Ocean Nauka, Moscow, Russia, 2 edition.LobkovskyL. I.SorokhtinO. G.1979Deformation of lithospheric plates in subduction zones. Oceanography and Geophysics of the OceanNauka, Moscow, Russia2 editionSearch in Google Scholar

Maiorova, A. S. and Adrianov, A. V. (2018). Deep-sea spoon worms (Echiura) from the Sea of Okhotsk and the adjacent T slope of the Kuril-Kamchatka Trench. Deep-Sea Research Part II 154:177–186, doi:10.1016/j.dsr2.2018.07.010.MaiorovaA. S.AdrianovA. V.2018Deep-sea spoon worms (Echiura) from the Sea of Okhotsk and the adjacent T slope of the Kuril-Kamchatka TrenchDeep-Sea Research Part II15417718610.1016/j.dsr2.2018.07.010Open DOISearch in Google Scholar

Meibom, A. and Anderson, D. L. (2003). The statistical upper mantle assemblage. Earth and Planetary Science Letters 217:123–139, doi:10.1016/S0012-821X(03)00573-9.MeibomA.AndersonD. L.2003The statistical upper mantle assemblageEarth and Planetary Science Letters21712313910.1016/S0012-821X(03)00573-9Open DOISearch in Google Scholar

Metz, M., Rocchini, D., and Neteler, M. (2014). Surface Temperatures at the Continental Scale: Tracking Changes with Remote Sensing at Unprecedented Detail. Remote Sensing 6:3822–3840, doi:10.3390/rs6053822.MetzM.RocchiniD.NetelerM.2014Surface Temperatures at the Continental Scale: Tracking Changes with Remote Sensing at Unprecedented DetailRemote Sensing63822384010.3390/rs6053822Open DOISearch in Google Scholar

Montaggioni, L. F., Salvat, B., Aubanel, A., Eisenhauer, A., and Martin-Garin, B. (2018). The mode and timing of windward reef-island accretion in relation with Holocene sea-level change: A case study from Takapoto Atoll, French Polynesia. Geomorphology 318:320–335, doi:10.1016/j.geomorph.2018.06.015.MontaggioniL. F.SalvatB.AubanelA.EisenhauerA.Martin-GarinB.2018The mode and timing of windward reef-island accretion in relation with Holocene sea-level change: A case study from Takapoto Atoll, French PolynesiaGeomorphology31832033510.1016/j.geomorph.2018.06.015Open DOISearch in Google Scholar

Persits, F. M., Ulmishek, G. F., and Steinshouer, D. W., editors (1997). Maps showing geology, oil and gas fields and geologic provinces of the former Soviet Union volume 97-470E, Denver, Colorado, U. S. U.S. Geological Survey, Open-File Report.PersitsF. M.UlmishekG. F.SteinshouerD. W.1997Maps showing geology, oil and gas fields and geologic provinces of the former Soviet Unionvolume 97-470EDenver, ColoradoU. S. U.S. Geological Survey, Open-File Report10.3133/ofr97470ESearch in Google Scholar

QGIS (2019). QGIS User Guide Release 3.4 QGIS Project.QGIS2019QGIS User Guide Release 3.4QGIS ProjectSearch in Google Scholar

Ramberg, H. (1967). Gravity, Deformation and the Earth’s Crust: As Studied by Centrifuged Models Academic Publishing, London, U. K.RambergH.1967Gravity, Deformation and the Earth’s Crust: As Studied by Centrifuged ModelsAcademic PublishingLondon, U. KSearch in Google Scholar

Ravisankar, R., Chandramohan, J., Chandrasekaran, A., Jebakumar, J. P. P., Vijayalakshmi, I., Vijayagopal, P., and Venkatraman, B. (2015). Assessments of radio- activity concentration of natural radionuclides and radiological hazard indices in sediment samples from the East coast of Tamilnadu, India with statistical approach. Marine Pollution Bulletin 97(1–2):419–430, doi:10.1016/j.marpolbul.2015.05.058.RavisankarR.ChandramohanJ.ChandrasekaranA.JebakumarJ. P. P.VijayalakshmiI.VijayagopalP.VenkatramanB.2015Assessments of radio- activity concentration of natural radionuclides and radiological hazard indices in sediment samples from the East coast of Tamilnadu, India with statistical approachMarine Pollution Bulletin971–241943010.1016/j.marpolbul.2015.05.05826036177Open DOISearch in Google Scholar

Rovere, M., Pellegrini, C., Chiggiato, J., Campiania, E., and Trincardi, F. (2019). Impact of dense bottom water on a continental shelf: An example from the T SW Adriatic margin. Marine Geology 408:123–143, doi:10.1016/j.margeo.2018.12.002.RovereM.PellegriniC.ChiggiatoJ.CampianiaE.TrincardiF.2019Impact of dense bottom water on a continental shelf: An example from the T SW Adriatic marginMarine Geology40812314310.1016/j.margeo.2018.12.002Open DOISearch in Google Scholar

Sandwell, D. T., Garcia, E., Soofi, K., Wessel, P., and Smith, W. H. F. (2013). Towards 1 mGal Global Marine Gravity from CryoSat-2, Envisat, and Jason-1. The Leading Edge 32(8):892–899, doi:10.1190/tle32080892.1.SandwellD. T.GarciaE.SoofiK.WesselP.SmithW. H. F.2013Towards 1 mGal Global Marine Gravity from CryoSat-2, Envisat, and Jason-1The Leading Edge32889289910.1190/tle32080892.1Open DOISearch in Google Scholar

Sandwell, D. T., Müller, R. D., Smith, W. H. F., Garcia, E., and Francis, R. (2014). New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science 346(6205):65–67, doi:10.1126/science.1258213.SandwellD. T.MüllerR. D.SmithW. H. F.GarciaE.FrancisR.2014New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structureScience3466205656710.1126/science.125821325278606Open DOISearch in Google Scholar

Sandwell, D. T. and Smith, W. H. F. (2009). Global marine gravity from retracked Geosat and ERS-1 altimetry: Ridge Segmentation versus spreading rate. Journal of Geophysical Research Atmospheres 114(B01411):1–18, doi:10.1029/2008JB006008.SandwellD. T.SmithW. H. F.2009Global marine gravity from retracked Geosat and ERS-1 altimetry: Ridge Segmentation versus spreading rateJournal of Geophysical Research Atmospheres114B0141111810.1029/2008JB006008Open DOISearch in Google Scholar

Schenke, H. W. and Lemenkova, P. (2008). Zur Frage der Meeresboden-Kartographie: Die Nutzung von Auto-Trace Digitizer für die Vektorisierung der Bathymetrischen Daten in der Petschora-See. Hydrographische Nachrichten 25(81):16–21, doi:10.6084/m9.figshare.7435538.v2.SchenkeH. W.LemenkovaP.2008Zur Frage der Meeresboden-Kartographie: Die Nutzung von Auto-Trace Digitizer für die Vektorisierung der Bathymetrischen Daten in der Petschora-SeeHydrographische Nachrichten2581162110.6084/m9.figshare.7435538.v2Open DOISearch in Google Scholar

Schmidt, C., Sattarova, V. V., Katrynski, L., and Arbizu, P. M. (2019). New insights from the deep: Meiofauna in the Kuril-Kamchatka Trench and adjacent abyssal plain. Progress in Oceanography 173:192–207, doi:10.1016/j.pocean.2019.02.010.SchmidtC.SattarovaV. V.KatrynskiL.ArbizuP. M.2019New insights from the deep: Meiofauna in the Kuril-Kamchatka Trench and adjacent abyssal plainProgress in Oceanography17319220710.1016/j.pocean.2019.02.010Open DOISearch in Google Scholar

Sen, A., Ondréas, H., Gaillot, A., Marcon, Y., Augustin, J. M., and Olu, K. (2016). The use of multibeam backscatter and bathymetry as a means of identifying faunal assemblages in a deep-sea cold seep. Deep-Sea Research Part I 110:33–49, doi:10.1016/j.dsr.2016.01.005.SenA.OndréasH.GaillotA.MarconY.AugustinJ. M.OluK.2016The use of multibeam backscatter and bathymetry as a means of identifying faunal assemblages in a deep-sea cold seepDeep-Sea Research Part I110334910.1016/j.dsr.2016.01.005Open DOISearch in Google Scholar

Smith, W. H. F. and Sandwell, D. T. (1997a). Global seafloor topography from satellite altimetry and ship depth soundings. Science 277(5334):1956–1962, doi:10.1126/science.277.5334.1956.SmithW. H. F.SandwellD. T.1997aGlobal seafloor topography from satellite altimetry and ship depth soundingsScience27753341956196210.1126/science.277.5334.1956Open DOISearch in Google Scholar

Smith, W. H. F. and Sandwell, D. T. (1997b). Marine gravity anomalies from GEOSAT and ERS-1 satellite altimetry. Journal of Geophysical Research Atmospheres 102(B5):10039– 10054, doi:10.1029/96JB03223.SmithW. H. F.SandwellD. T.1997bMarine gravity anomalies from GEOSAT and ERS-1 satellite altimetryJournal of Geophysical Research Atmospheres102B5100391005410.1029/96JB03223Open DOISearch in Google Scholar

Soloviev, S. L. (1968). Problem of tsunami and its significance for Kamchatka and Kuriles. The Problem of Tsunami Nauka, Moscow, Russia, 2 edition.SolovievS. L.1968Problem of tsunami and its significance for Kamchatka and Kuriles. The Problem of TsunamiNauka, Moscow, Russia2 editionSearch in Google Scholar

Soloviev, S. L. (1972). Recurrence of earthquakes and tsunamis in the Pacific. Proceedings SakhKNII 29:7–47.SolovievS. L.1972Recurrence of earthquakes and tsunamis in the PacificProceedings SakhKNII29747Search in Google Scholar

Strick, R. J. P., Ashworth, P. J., Awcock, G., and Lewin, J. (2018). Morphology and spacing of river meander scrolls. Geomorphology 310:57–68, doi:10.1016/j.geomorph.2018.03.005.StrickR. J. P.AshworthP. J.AwcockG.LewinJ.2018Morphology and spacing of river meander scrollsGeomorphology310576810.1016/j.geomorph.2018.03.005Open DOISearch in Google Scholar

Suetova, I. A., Ushakova, L. A., and Lemenkova, P. (2005). Geoinformation mapping of the Barents and Pechora Seas. Geography and Natural Resources 4:138–142, doi:10.6084/m9.figshare.7435535.SuetovaI. A.UshakovaL. A.LemenkovaP.2005Geoinformation mapping of the Barents and Pechora SeasGeography and Natural Resources413814210.6084/m9.figshare.7435535Open DOISearch in Google Scholar

Tomaszewski, D., Rapinski, J., and Pelc-Mieczkowska, R. (2017). Concept of AHRS Algorithm Designed for Platform Independent IMU Attitude Alignment. Reports on Geodesy and Geoinformatics 104:33–47, doi:10.1515/rgg-2017-0013.TomaszewskiD.RapinskiJ.Pelc-MieczkowskaR.2017Concept of AHRS Algorithm Designed for Platform Independent IMU Attitude AlignmentReports on Geodesy and Geoinformatics104334710.1515/rgg-2017-0013Open DOISearch in Google Scholar

Tyler, P. A. (2002). Deep-sea eukaryote ecology of the semiisolated basins off Japan. Journal of Oceanography 58:333– 341, doi:10.1023/A:1015817910449.TylerP. A.2002Deep-sea eukaryote ecology of the semiisolated basins off JapanJournal of Oceanography5833334110.1023/A:1015817910449Open DOISearch in Google Scholar

Vázquez, J. T., Alonso, B., Fernández-Puga, M., Gómez-Ballesteros, M., Iglesias, J., Palomino, D., Roque, C., Ercilla, G., and Díaz-del Río, V. (2015). Seamounts along the Iberian Continental Margins. Boletín Geológico y Minero 126(2–3):483–514.VázquezJ. T.AlonsoB.Fernández-PugaM.Gómez-BallesterosM.IglesiasJ.PalominoD.RoqueC.ErcillaG.Díaz-del RíoV.2015Seamounts along the Iberian Continental MarginsBoletín Geológico y Minero1262–3483514Search in Google Scholar

Wessel, P. and Smith, W. H. F. (1996). A Global Self-consistent, Hierarchical, High-resolution Shoreline Database. Journal of Geophysical Research Atmospheres 101:8741–8743, doi:10.1029/96JB00104.WesselP.SmithW. H. F.1996A Global Self-consistent, Hierarchical, High-resolution Shoreline DatabaseJournal of Geophysical Research Atmospheres1018741874310.1029/96JB00104Open DOISearch in Google Scholar

Wessel, P. and Smith, W. H. F. (1998). New version, of the Generic Mapping Tools released. EOS Transactions of the American Geophysical Union 79(47):329, doi:10.1029/98EO00426.WesselP.SmithW. H. F.1998New version, of the Generic Mapping Tools releasedEOS Transactions of the American Geophysical Union794732910.1029/98EO00426Open DOISearch in Google Scholar

Wessel, P. and Smith, W. H. F. (2018). The Generic Mapping Tools. Version 4.5.18 Technical Reference and Cookbook GMT, U.S.A.WesselP.SmithW. H. F.2018The Generic Mapping Tools. Version 4.5.18 Technical Reference and CookbookGMTU.S.ASearch in Google Scholar

Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J., and Wobbe, F. (2019). The Generic Mapping Tools. GMT Man Pages. Release 5.4.5 GMT, U.S.A.WesselP.SmithW. H. F.ScharrooR.LuisJ.WobbeF.2019The Generic Mapping Tools. GMT Man Pages. Release 5.4.5GMTU.S.ASearch in Google Scholar

Yesson, C., Clark, M. R., Taylor, M. L., and Rogers, A. D. (2011). The global distribution of seamounts based on 30 arc seconds bathymetry data. Deep-Sea Research Part I 58:442–453, doi:10.1016/j.dsr.2011.02.004.YessonC.ClarkM. R.TaylorM. L.RogersA. D.2011The global distribution of seamounts based on 30 arc seconds bathymetry dataDeep-Sea Research Part I5844245310.1016/j.dsr.2011.02.004Open DOISearch in Google Scholar

Zenkevich, L. (1963). Biology of the Seas of the USSR Institute of Oceanology RAS Press, Moscow, Russia.ZenkevichL.1963Biology of the Seas of the USSRInstitute of Oceanology RAS PressMoscow, Russia10.5962/bhl.title.6447Search in Google Scholar

Zhang, F., Lin, J., and Zhan, W. (2014). Variations in oceanic plate bending along the Mariana trench. Earth and Planetary Science Letters 401:206–214, doi:10.1016/j.epsl.2014.05.032.ZhangF.LinJ.ZhanW.2014Variations in oceanic plate bending along the Mariana trenchEarth and Planetary Science Letters40120621410.1016/j.epsl.2014.05.032Open DOISearch in Google Scholar

eISSN:
2391-8152
Idioma:
Inglés
Calendario de la edición:
Volume Open
Temas de la revista:
Computer Sciences, other, Geosciences, Geodesy, Cartography and Photogrammetry