This work is licensed under the Creative Commons Attribution 4.0 International License.
Gabriel B, Teissie J. Generation of reactive-oxygen species induced by electropermeabilization of Chinese hamster ovary cells and their consequence on cell viability. Eur J Biochem 1994; 223: 25-33. doi: 10.1111/j.1432-1033.1994.tb18962.xGabrielBTeissieJ.Generation of reactive-oxygen species induced by electropermeabilization of Chinese hamster ovary cells and their consequence on cell viability. Eur J Biochem1994; 223: 25-33. doi: 10.1111/j.1432-1033.1994.tb18962.xOpen DOISearch in Google Scholar
Maccarrone M, Rosato N, Agro AF. Electroporation enhances cell membrane peroxidation and luminescence. Biochem Biophys Res Commun 1995; 206: 238-45. doi: 10.1006/bbrc.1995.1033MaccarroneMRosatoNAgroAF.Electroporation enhances cell membrane peroxidation and luminescence. Biochem Biophys Res Commun1995; 206: 238-45. doi: 10.1006/bbrc.1995.1033Open DOISearch in Google Scholar
Maccarrone M, Bladergroen MR, Rosato N, Agro AF. Role of lipid peroxidation in electroporation-induced cell permeability. Biochem Biophys Res Commun 1995; 209: 417-25. doi: 10.1006/bbrc.1995.1519MaccarroneMBladergroenMRRosatoNAgroAF.Role of lipid peroxidation in electroporation-induced cell permeability. Biochem Biophys Res Commun1995; 209: 417-25. doi: 10.1006/bbrc.1995.1519Open DOISearch in Google Scholar
Bonnafous P, Vernhes MC, Teissié J, Gabriel B. The generation of reactive oxygen species associated with long-lasting pulse-induced electropermeabilisation of mammalian cells is based on a non-destructive alteration of the plasma membrane. Biochim Biophys Acta Biomembranes 1999; 1461: 123-34. doi: 10.1016/S0005-2736(99)00154-6BonnafousPVernhesMCTeissiéJGabrielB.The generation of reactive oxygen species associated with long-lasting pulse-induced electropermeabilisation of mammalian cells is based on a non-destructive alteration of the plasma membrane. Biochim Biophys Acta Biomembranes1999; 1461: 123-34. doi: 10.1016/S0005-2736(99)00154-6Open DOISearch in Google Scholar
Rems L, Viano M, Kasimova MA, Miklavčič D, Tarek M. The contribution of lipid peroxidation to membrane permeability in electropermeabilization: a molecular dynamics study. Bioelectrochemistry 2019; 125: 46-57. doi: 10.1016/j.bioelechem.2018.07.018RemsLVianoMKasimovaMAMiklavčičDTarekM.The contribution of lipid peroxidation to membrane permeability in electropermeabilization: a molecular dynamics study. Bioelectrochemistry2019; 125: 46-57. doi: 10.1016/j.bioelechem.2018.07.018Open DOISearch in Google Scholar
Balantič K, Weiss VU, Pittenauer E, Miklavčič D, Kramar P. The role of lipid oxidation on electrical properties of planar lipid bilayers and its importance for understanding electroporation. Bioelectrochemistry 2023; 153: 108498. doi: 10.1016/j.bioelechem.2023.108498BalantičKWeissVUPittenauerEMiklavčičDKramarP.The role of lipid oxidation on electrical properties of planar lipid bilayers and its importance for understanding electroporation. Bioelectrochemistry2023; 153: 108498. doi: 10.1016/j.bioelechem.2023.108498Open DOISearch in Google Scholar
Rems L, Kasimova MA, Testa I, Delemotte L. Pulsed electric fields can create pores in the voltage sensors of voltage-gated ion channels. Biophys J 2020; 119: 190-205. doi: 10.1016/j.bpj.2020.05.030RemsLKasimovaMATestaIDelemotteL.Pulsed electric fields can create pores in the voltage sensors of voltage-gated ion channels. Biophys J2020; 119: 190-205. doi: 10.1016/j.bpj.2020.05.030Open DOISearch in Google Scholar
Geboers B, Scheffer HJ, Graybill PM, Ruarus AH, Nieuwenhuizen S, Puijk RS, et al. High-voltage electrical pulses in oncology: Irreversible electroporation, electrochemotherapy, gene electrotransfer, electrofusion, and electroimmunotherapy. Radiology 2020; 295: 254-72. doi: 10.1148/RADIOL.2020192190GeboersBSchefferHJGraybillPMRuarusAHNieuwenhuizenSPuijkRSHigh-voltage electrical pulses in oncology: Irreversible electroporation, electrochemotherapy, gene electrotransfer, electrofusion, and electroimmunotherapy. Radiology2020; 295: 254-72. doi: 10.1148/RADIOL.2020192190Open DOISearch in Google Scholar
Neumann E, Rosenheck K. Permeability changes induced by electric impulses in vesicular membranes. J Membr Biol 1972; 10: 279-90. doi: 10.1007/BF01867861NeumannERosenheckK.Permeability changes induced by electric impulses in vesicular membranes. J Membr Biol1972; 10: 279-90. doi: 10.1007/BF01867861Open DOISearch in Google Scholar
DeBruin KA, Krassowska W. Modeling electroporation in a single cell. I. Effects of field strength and rest potential. Biophys J 1999; 77: 1213-24. doi: 10.1016/S0006-3495(99)76973-0DeBruinKAKrassowskaW.Modeling electroporation in a single cell. I. Effects of field strength and rest potential. Biophys J1999; 77: 1213-24. doi: 10.1016/S0006-3495(99)76973-0Open DOISearch in Google Scholar
Lee RC, Gaylor DC, Bhatt D, Israel DA. Role of cell membrane rupture in the pathogenesis of electrical trauma. J Surg Res 1988; 44: 709-19. doi: 10.1016/0022-4804(88)90105-9LeeRCGaylorDCBhattDIsraelDA.Role of cell membrane rupture in the pathogenesis of electrical trauma. J Surg Res1988; 44: 709-19. doi: 10.1016/0022-4804(88)90105-9Open DOISearch in Google Scholar
Jacobs IV EJ, Graybill PM, Jana A, Agashe A, Nain AS, Davalos R V. Engineering high post-electroporation viabilities and transfection efficiencies for elongated cells on suspended nanofiber networks. Bioelectrochemistry 2023; 152: 108415. doi: 10.1016/j.bioelechem.2023.108415Jacobs IVEJGraybillPMJanaAAgasheANainASDavalosR V.Engineering high post-electroporation viabilities and transfection efficiencies for elongated cells on suspended nanofiber networks. Bioelectrochemistry2023; 152: 108415. doi: 10.1016/j.bioelechem.2023.108415Open DOISearch in Google Scholar
Böckmann RA, De Groot BL, Kakorin S, Neumann E, Grubmü H. Kinetics, statistics, and energetics of lipid membrane electroporation studied by molecular dynamics simulations. Biophys J 2008; 95: 1837-50. doi: 10.1529/biophysj.108.129437BöckmannRADe GrootBLKakorinSNeumannEGrubmüH.Kinetics, statistics, and energetics of lipid membrane electroporation studied by molecular dynamics simulations. Biophys J2008; 95: 1837-50. doi: 10.1529/biophysj.108.129437Open DOISearch in Google Scholar
Neumann E, Kakorin S. Membrane electroporation: chemical thermo-dynamics and flux kinetics revisited and refined. Eur Biophys J 2018; 47: 373-87. doi: 10.1007/S00249-018-1305-3NeumannEKakorinS.Membrane electroporation: chemical thermo-dynamics and flux kinetics revisited and refined. Eur Biophys J2018; 47: 373-87. doi: 10.1007/S00249-018-1305-3Open DOISearch in Google Scholar
Saulis G. Pore disappearance in a cell after electroporation: theoretical simulation and comparison with experiments. Biophy J 1997; 73: 1299-309. doi: 10.1016/S0006-3495(97)78163-3SaulisG.Pore disappearance in a cell after electroporation: theoretical simulation and comparison with experiments. Biophy J1997; 73: 1299-309. doi: 10.1016/S0006-3495(97)78163-3Open DOISearch in Google Scholar
Ottlakan A, Lazar G, Olah J, Nagy A, Vass G, Vaset M, et al. Current updates in bleomycin-based electrochemotherapy for deep-seated soft-tissue tumors. Electrochem 2023; 4: 282-90. doi: 10.3390/electrochem4020019OttlakanALazarGOlahJNagyAVassGVasetMCurrent updates in bleomycin-based electrochemotherapy for deep-seated soft-tissue tumors. Electrochem2023; 4: 282-90. doi: 10.3390/electrochem4020019Open DOISearch in Google Scholar
Mir LM, Orlowski S, Belehradek J, Paoletti C. Electrochemotherapy potentiation of antitumour effect of bleomycin by local electric pulses. Eur J Cancer Clin Oncol 1991; 27: 68-72. doi: 10.1016/0277-5379(91)90064-KMirLMOrlowskiSBelehradekJPaolettiC.Electrochemotherapy potentiation of antitumour effect of bleomycin by local electric pulses. Eur J Cancer Clin Oncol1991; 27: 68-72. doi: 10.1016/0277-5379(91)90064-KOpen DOISearch in Google Scholar
Spiliotis AE, Holländer S, Rudzitis-Auth J, Wagenpfeil G, Eisele R, Nika S, et al. Evaluation of electrochemotherapy with bleomycin in the treatment of colorectal hepatic metastases in a rat model. Cancers 2023; 15: 1598. doi: 10.3390/cancers15051598SpiliotisAEHolländerSRudzitis-AuthJWagenpfeilGEiseleRNikaSEvaluation of electrochemotherapy with bleomycin in the treatment of colorectal hepatic metastases in a rat model. Cancers2023; 15: 1598. doi: 10.3390/cancers15051598Open DOISearch in Google Scholar
Pakhomova ON, Gregory B, Semenov I, Pakhomov AG. Calcium-mediated pore expansion and cell death following nanoelectroporation. Biochim Biophys Acta Biomembr 2014; 1838: 2547-54. doi: 10.1016/j.bbamem.2014.06.015PakhomovaONGregoryBSemenovIPakhomovAG.Calcium-mediated pore expansion and cell death following nanoelectroporation. Biochim Biophys Acta Biomembr2014; 1838: 2547-54. doi: 10.1016/j.bbamem.2014.06.015Open DOISearch in Google Scholar
Szewczyk A, Gehl J, Daczewska M, Saczko J, Krog Frandsen S, Kulbacka J. Calcium electroporation for treatment of sarcoma in preclinical studies. Oncotarget 2018; 9: 11604-18. doi: 10.18632/oncotarget.24352SzewczykAGehlJDaczewskaMSaczkoJKrog FrandsenSKulbackaJ.Calcium electroporation for treatment of sarcoma in preclinical studies. Oncotarget2018; 9: 11604-18. doi: 10.18632/oncotarget.24352Open DOISearch in Google Scholar
Falk H, Matthiessen LW, Wooler G, Gehl J. Calcium electroporation for treatment of cutaneous metastases; a randomized double-blinded phase II study, comparing the effect of calcium electroporation with electrochemotherapy. Acta Oncol 2018; 57: 311-9. doi: 10.1080/0284186X.2017.1355109FalkHMatthiessenLWWoolerGGehlJ.Calcium electroporation for treatment of cutaneous metastases; a randomized double-blinded phase II study, comparing the effect of calcium electroporation with electrochemotherapy. Acta Oncol2018; 57: 311-9. doi: 10.1080/0284186X.2017.1355109Open DOISearch in Google Scholar
Frandsen SK, Gissel H, Hojman P, Tramm T, Eriksen J, Gehl J. Direct therapeutic applications of calcium electroporation to effectively induce tumor necrosis. Cancer Res 2012; 72: 1336-41. doi: 10.1158/0008-5472.CAN-11-3782FrandsenSKGisselHHojmanPTrammTEriksenJGehlJ.Direct therapeutic applications of calcium electroporation to effectively induce tumor necrosis. Cancer Res2012; 72: 1336-41. doi: 10.1158/0008-5472.CAN-11-3782Open DOISearch in Google Scholar
Plaschke CC, Gehl J, Johannesen HH, Fisher BM, Kjaer A, Lomholt AF, et al. Calcium electroporation for recurrent head and neck cancer: a clinical phase I study. Laryngoscope Investig Otolaryngol 2019; 4: 49-56. doi:10.1002/lio2.233PlaschkeCCGehlJJohannesenHHFisherBMKjaerALomholtAFCalcium electroporation for recurrent head and neck cancer: a clinical phase I study. Laryngoscope Investig Otolaryngol2019; 4: 49-56. doi:10.1002/lio2.233Open DOISearch in Google Scholar
Kraemer MM, Tsimpaki T, Berchner-Pfannschmidt U, Bechrakis NE, Seitz B, Fiorentzis M. Calcium electroporation reduces viability and proliferation capacity of four uveal melanoma cell lines in 2D and 3D cultures. Cancers 2022; 14: 2889. doi:10.3390/cancers14122889KraemerMMTsimpakiTBerchner-PfannschmidtUBechrakisNESeitzBFiorentzisM.Calcium electroporation reduces viability and proliferation capacity of four uveal melanoma cell lines in 2D and 3D cultures. Cancers2022; 14: 2889. doi:10.3390/cancers14122889Open DOISearch in Google Scholar
Frandsen SK, Gibot L, Madi M, Gehl J, Rols MP. Calcium electroporation: Evidence for differential effects in normal and malignant cell lines, evaluated in a 3D spheroid model. PLoS One 2015; 10: e0144028. doi: 10.1371/journal.pone.0144028FrandsenSKGibotLMadiMGehlJRolsMP.Calcium electroporation: Evidence for differential effects in normal and malignant cell lines, evaluated in a 3D spheroid model. PLoS One2015; 10: e0144028. doi: 10.1371/journal.pone.0144028Open DOISearch in Google Scholar
Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH. Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1982; 1: 841-5. doi: 10.1002/j.1460-2075.1982.tb01257.xNeumannESchaefer-RidderMWangYHofschneiderPH.Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J1982; 1: 841-5. doi: 10.1002/j.1460-2075.1982.tb01257.xOpen DOISearch in Google Scholar
Rosazza C, Haberl Meglic S, Zumbusch A, Rols MP, Miklavcic D. Gene electrotransfer: a mechanistic perspective. Curr Gene Ther 2016; 16: 98-129. doi: 10.2174/1566523216666160331130040RosazzaCHaberl MeglicSZumbuschARolsMPMiklavcicD.Gene electrotransfer: a mechanistic perspective. Curr Gene Ther2016; 16: 98-129. doi: 10.2174/1566523216666160331130040Open DOISearch in Google Scholar
Alex A, Piano V, Polley S, Stuiver M, Voss S, Ciossani G, et al. Electroporated recombinant proteins as tools for in vivo functional complementation, imaging and chemical biology. Elife 2019; 8: e48287. doi: 10.7554/eLife.48287.001AlexAPianoVPolleySStuiverMVossSCiossaniGElectroporated recombinant proteins as tools for in vivo functional complementation, imaging and chemical biology. Elife2019; 8: e48287. doi: 10.7554/eLife.48287.001Open DOISearch in Google Scholar
Batista Napotnik T, Polajžer T, Miklavčič D. Cell death due to electroporation – a review. Bioelectrochemistry 2021; 141: 107871. doi: 10.1016/J. BIOELECHEM.2021.107871Batista NapotnikTPolajžerTMiklavčičD.Cell death due to electroporation – a review. Bioelectrochemistry2021; 141: 107871. doi: 10.1016/J. BIOELECHEM.2021.107871Open DOISearch in Google Scholar
Saulis G, Saule R. Size of the pores created by an electric pulse: microsecond vs millisecond pulses. Biochim Biophys Acta 2012; 1818: 3032-9. doi: 10.1016/j.bbamem.2012.06.018SaulisGSauleR.Size of the pores created by an electric pulse: microsecond vs millisecond pulses. Biochim Biophys Acta2012; 1818: 3032-9. doi: 10.1016/j.bbamem.2012.06.018Open DOISearch in Google Scholar
Runas KA, Malmstadt N. Low levels of lipid oxidation radically increase the passive permeability of lipid bilayers. Soft Matter 2015; 11: 499-505. doi: 10.1039/c4sm01478bRunasKAMalmstadtN.Low levels of lipid oxidation radically increase the passive permeability of lipid bilayers. Soft Matter2015; 11: 499-505. doi: 10.1039/c4sm01478bOpen DOISearch in Google Scholar
Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev 2014; 2014: 360438. doi: 10.1155/2014/360438AyalaAMuñozMFArgüellesS.Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev2014; 2014: 360438. doi: 10.1155/2014/360438Open DOISearch in Google Scholar
Vernier PT, Levine ZA, Wu YH, Joubert V, Ziegler MJ, Mir LM, et al. Electroporating fields target oxidatively damaged areas in the cell membrane. PLoS One 2009; 4: e7966. doi: 10.1371/journal.pone.0007966VernierPTLevineZAWuYHJoubertVZieglerMJMirLMElectroporating fields target oxidatively damaged areas in the cell membrane. PLoS One2009; 4: e7966. doi: 10.1371/journal.pone.0007966Open DOISearch in Google Scholar
Leguèbe M, Silve A, Mir LM, Poignard C. Conducting and permeable states of cell membrane submitted to high voltage pulses: mathematical and numerical studies validated by the experiments. J Theor Biol 2014; 360: 83-94. doi: 10.1016/j.jtbi.2014.06.027LeguèbeMSilveAMirLMPoignardC.Conducting and permeable states of cell membrane submitted to high voltage pulses: mathematical and numerical studies validated by the experiments. J Theor Biol2014; 360: 83-94. doi: 10.1016/j.jtbi.2014.06.027Open DOISearch in Google Scholar
Graybill PM, Davalos R V. Cytoskeletal disruption after electroporation and its significance to pulsed electric field therapies. Cancers 2020; 12: 1132. doi: 10.3390/cancers12051132GraybillPMDavalosR V.Cytoskeletal disruption after electroporation and its significance to pulsed electric field therapies. Cancers2020; 12: 1132. doi: 10.3390/cancers12051132Open DOISearch in Google Scholar
Steuer A, Schmidt A, Labohá P, Babica P, Kolb JF. Transient suppression of gap junctional intercellular communication after exposure to 100-nanosecond pulsed electric fields. Bioelectrochemistry 2016; 112: 33-46. doi: 10.1016/j.bioelechem.2016.07.003SteuerASchmidtALaboháPBabicaPKolbJF.Transient suppression of gap junctional intercellular communication after exposure to 100-nanosecond pulsed electric fields. Bioelectrochemistry2016; 112: 33-46. doi: 10.1016/j.bioelechem.2016.07.003Open DOISearch in Google Scholar
Steuer A, Wende K, Babica P, Kolb JF. Elasticity and tumorigenic characteristics of cells in a monolayer after nanosecond pulsed electric field exposure. Eur Biophys J 2017; 46: 567-80. doi: 10.1007/s00249-017-1205-ySteuerAWendeKBabicaPKolbJF.Elasticity and tumorigenic characteristics of cells in a monolayer after nanosecond pulsed electric field exposure. Eur Biophys J2017; 46: 567-80. doi: 10.1007/s00249-017-1205-yOpen DOISearch in Google Scholar
Thompson GL, Roth C, Tolstykh G, Kuipers M, Ibey BL. Disruption of the actin cortex contributes to susceptibility of mammalian cells to nanosecond pulsed electric fields. Bioelectromagnetics 2014; 35: 262-72. doi: 10.1002/bem.21845ThompsonGLRothCTolstykhGKuipersMIbeyBL.Disruption of the actin cortex contributes to susceptibility of mammalian cells to nanosecond pulsed electric fields. Bioelectromagnetics2014; 35: 262-72. doi: 10.1002/bem.21845Open DOISearch in Google Scholar
Graybill PM, Jana A, Kapania RK, Nain AS, Davalos R V. Single cell forces after electroporation. ACS Nano 2021; 15: 2554-68. doi: 10.1021/acsnano.0c07020GraybillPMJanaAKapaniaRKNainASDavalosR V.Single cell forces after electroporation. ACS Nano2021; 15: 2554-68. doi: 10.1021/acsnano.0c07020Open DOISearch in Google Scholar
Thompson GL, Roth CC, Dalzell DR, Kuipers MA, Ibey BL. Calcium influx affects intracellular transport and membrane repair following nanosecond pulsed electric field exposure. J Biomed Opt 2014; 19: 055005. doi: 10.1117/1.jbo.19.5.055005ThompsonGLRothCCDalzellDRKuipersMAIbeyBL.Calcium influx affects intracellular transport and membrane repair following nanosecond pulsed electric field exposure. J Biomed Opt2014; 19: 055005. doi: 10.1117/1.jbo.19.5.055005Open DOISearch in Google Scholar
Kanthou C, Kranjc S, Sersa G, Tozer G, Zupanic A, Cemazar M. The endothelial cytoskeleton as a target of electroporation-based therapies. Mol Cancer Ther 2006; 5: 3145-52. doi: 10.1158/1535-7163.MCT-06-0410KanthouCKranjcSSersaGTozerGZupanicACemazarM.The endothelial cytoskeleton as a target of electroporation-based therapies. Mol Cancer Ther2006; 5: 3145-52. doi: 10.1158/1535-7163.MCT-06-0410Open DOISearch in Google Scholar
Harkin DG, Hay ED. Effects of electroporation on the tubulin cytoskeleton and directed migration of corneal fibroblasts cultured within collagen matrices. Cell Motil Cytoskeleton 1996; 35: 345-57. doi: 10.1002/(SICI)1097-0169(1996)35:4<345::AID-CM6>3.0.CO;2-5HarkinDGHayED.Effects of electroporation on the tubulin cytoskeleton and directed migration of corneal fibroblasts cultured within collagen matrices. Cell Motil Cytoskeleton1996; 35: 345-57. doi: 10.1002/(SICI)1097-0169(1996)35:4<345::AID-CM6>3.0.CO;2-5Open DOISearch in Google Scholar
Thompson GL, Roth CC, Kuipers MA, Tolstykh GP, Beier HT, Ibey BL. Permeabilization of the nuclear envelope following nanosecond pulsed electric field exposure. Biochem Biophys Res Commun 2016; 470: 35-40. doi: 10.1016/j.bbrc.2015.12.092ThompsonGLRothCCKuipersMATolstykhGPBeierHTIbeyBL.Permeabilization of the nuclear envelope following nanosecond pulsed electric field exposure. Biochem Biophys Res Commun2016; 470: 35-40. doi: 10.1016/j.bbrc.2015.12.092Open DOISearch in Google Scholar
Fletcher DA, Mullins RD. Cell mechanics and the cytoskeleton. Nature 2010; 463: 485-92. doi: 10.1038/nature08908FletcherDAMullinsRD.Cell mechanics and the cytoskeleton. Nature2010; 463: 485-92. doi: 10.1038/nature08908Open DOISearch in Google Scholar
Rols MP, Teissié J. Experimental evidence for the involvement of the cytoskeleton in mammalian cell electropermeabilization. Biochim Biophys Acta 1992; 1111: 45-50. doi: 10.1016/0005-2736(92)90272-NRolsMPTeissiéJ.Experimental evidence for the involvement of the cytoskeleton in mammalian cell electropermeabilization. Biochim Biophys Acta1992; 1111: 45-50. doi: 10.1016/0005-2736(92)90272-NOpen DOISearch in Google Scholar
Partridge BR, Kani Y, Lorenzo MF, Campelo SN, Allen IC, Hinckley J, et al. High-frequency irreversible electroporation (H-FIRE) induced blood–brain barrier disruption is mediated by cytoskeletal remodeling and changes in tight junction protein regulation. Biomedicines 2022; 10: 1384. doi: 10.3390/biomedicines10061384PartridgeBRKaniYLorenzoMFCampeloSNAllenICHinckleyJHigh-frequency irreversible electroporation (H-FIRE) induced blood–brain barrier disruption is mediated by cytoskeletal remodeling and changes in tight junction protein regulation. Biomedicines2022; 10: 1384. doi: 10.3390/biomedicines10061384Open DOISearch in Google Scholar
Arena CB, Garcia PA, Sano MB, et al. Focal blood-brain-barrier disruption with high-frequency pulsed electric fields. Technology 2014; 2: 206-13. doi: 10.1142/s2339547814500186ArenaCBGarciaPASanoMBFocal blood-brain-barrier disruption with high-frequency pulsed electric fields. Technology2014; 2: 206-13. doi: 10.1142/s2339547814500186Open DOISearch in Google Scholar
Garcia PA, Rossmeisl JH, Robertson JL, Olson JD, Johnson AJ, Ellis TL, et al. 7.0-T magnetic resonance imaging characterization of acute blood-brain-barrier disruption achieved with intracranial irreversible electroporation. PLoS One 2012; 7: e50482. doi: 10.1371/journal.pone.0050482GarciaPARossmeislJHRobertsonJLOlsonJDJohnsonAJEllisTL7.0-T magnetic resonance imaging characterization of acute blood-brain-barrier disruption achieved with intracranial irreversible electroporation. PLoS One2012; 7: e50482. doi: 10.1371/journal.pone.0050482Open DOISearch in Google Scholar
Stacey M, Fox P, Buescher S, Kolb J. Nanosecond pulsed electric field induced cytoskeleton, nuclear membrane and telomere damage adversely impact cell survival. Bioelectrochemistry 2011; 82: 131-4. doi: 10.1016/j. bioelechem.2011.06.002StaceyMFoxPBuescherSKolbJ.Nanosecond pulsed electric field induced cytoskeleton nuclear membrane and telomere damage adversely impact cell survival. Bioelectrochemistry2011; 82: 131-4. doi: 10.1016/j. bioelechem.2011.06.002Open DOISearch in Google Scholar
Xiao D, Tang L, Zeng C, Wang J, Luo X, Yao C, et al. Effect of actin cytoskeleton disruption on electric pulse-induced apoptosis and electroporation in tumour cells. Cell Biol Int 2011; 35: 99-104. doi: 10.1042/cbi20100464XiaoDTangLZengCWangJLuoXYaoCEffect of actin cytoskeleton disruption on electric pulse-induced apoptosis and electroporation in tumour cells. Cell Biol Int2011; 35: 99-104. doi: 10.1042/cbi20100464Open DOISearch in Google Scholar
Davalos R V, Mir LM, Rubinsky B. Tissue ablation with irreversible electroporation. Ann Biomed Eng 2005; 33: 223-31. doi: 10.1007/s10439-005-8981-8DavalosR VMirLMRubinskyB.Tissue ablation with irreversible electroporation. Ann Biomed Eng2005; 33: 223-31. doi: 10.1007/s10439-005-8981-8Open DOISearch in Google Scholar
Edd JF, Horowitz L, Davalos R V., Mir LM, Rubinsky B. In vivo results of a new focal tissue ablation technique: Irreversible electroporation. IEEE Trans Biomed Eng 2006; 53: 1409-15. doi: 10.1109/TBME.2006.873745EddJFHorowitzLDavalosR V.MirLMRubinskyB.In vivo results of a new focal tissue ablation technique: Irreversible electroporation. IEEE Trans Biomed Eng2006; 53: 1409-15. doi: 10.1109/TBME.2006.873745Open DOISearch in Google Scholar
Al-Sakere B, André F, Bernat C, Connault E, Opolon P, Davalos RV, et al. Tumor ablation with irreversible electroporation. PLoS One 2007; 2: e1135. doi: 10.1371/JOURNAL.PONE.0001135Al-SakereBAndréFBernatCConnaultEOpolonPDavalosRVTumor ablation with irreversible electroporation. PLoS One2007; 2: e1135. doi: 10.1371/JOURNAL.PONE.0001135Open DOISearch in Google Scholar
Bertacchini C, Margotti PM, Bergamini E, Lodi A, Ronchetti M, Cadossi R. Design of an irreversible electroporation system for clinical use. Technol Cancer Res Treat 2007; 6: 313-20. doi: 10.1177/15330346070060040BertacchiniCMargottiPMBergaminiELodiARonchettiMCadossiR.Design of an irreversible electroporation system for clinical use. Technol Cancer Res Treat2007; 6: 313-20. doi: 10.1177/15330346070060040Open DOISearch in Google Scholar
Gielchinsky I, Lev-Cohain N. Focal irreversible electroporation for localized prostate cancer – oncological and safety outcomes using mpMRI and transperineal biopsy follow-up. Res Rep Urol 2023; 15: 27-35. doi: 10.2147/RRU. S393243GielchinskyILev-CohainN.Focal irreversible electroporation for localized prostate cancer – oncological and safety outcomes using mpMRI and transperineal biopsy follow-up. Res Rep Urol2023; 15: 27-35. doi: 10.2147/RRU. S393243Open DOISearch in Google Scholar
Zhang K, Teoh J, Laguna P, Dominguez-Escrig J, Barret E, Ramon-Borja JC, et al. Effect of focal vs extended irreversible electroporation for the ablation of localized low-or intermediate-risk prostate cancer on early oncological control: a randomized clinical trial. JAMA Surg 2023; 158: 343-9. doi: 10.1001/jamasurg.2022.7516ZhangKTeohJLagunaPDominguez-EscrigJBarretERamon-BorjaJCEffect of focal vs extended irreversible electroporation for the ablation of localized low-or intermediate-risk prostate cancer on early oncological control: a randomized clinical trial. JAMA Surg2023; 158: 343-9. doi: 10.1001/jamasurg.2022.7516Open DOISearch in Google Scholar
Prabhakar P, Avudaiappan AP, Sandman M, Eldefrawy A, Caso J, Narayanan G, et al. Irreversible electroporation as a focal therapy for localized prostate cancer: a systematic review. Indian J Urol 2024; 40: 6-16. doi: 10.4103/iju. iju_370_23PrabhakarPAvudaiappanAPSandmanMEldefrawyACasoJNarayananGIrreversible electroporation as a focal therapy for localized prostate cancer: a systematic review. Indian J Urol2024; 40: 6-16. doi: 10.4103/iju. iju_370_23Open DOISearch in Google Scholar
van den Bos W, Jurhill RR, de Bruin DM, Savci-Heijink CD, Postema AW, Wagstaff PG, et al. Histopathological outcomes after irreversible electroporation for prostate cancer: results of an ablate and resect study. J Urol 2016; 196: 552-9. doi: 10.1016/j.juro.2016.02.2977van den BosWJurhillRRde BruinDMSavci-HeijinkCDPostemaAWWagstaffPGHistopathological outcomes after irreversible electroporation for prostate cancer: results of an ablate and resect study. J Urol2016; 196: 552-9. doi: 10.1016/j.juro.2016.02.2977Open DOISearch in Google Scholar
Valerio M, Dickinson L, Ali A, Ramachadran N, Donaldson I, Mccartan N, et al. Nanoknife electroporation ablation trial: a prospective development study investigating focal irreversible electroporation for localized prostate cancer. J Urol 2017; 197: 647-54. doi: 10.1016/j.juro.2016.09.091ValerioMDickinsonLAliARamachadranNDonaldsonIMccartanNNanoknife electroporation ablation trial: a prospective development study investigating focal irreversible electroporation for localized prostate cancer. J Urol2017; 197: 647-54. doi: 10.1016/j.juro.2016.09.091Open DOISearch in Google Scholar
van den Bos W, Scheltema MJ, Siriwardana AR, Kalsbeek AMF, Thompson JE, Ting F, et al. Focal irreversible electroporation as primary treatment for localized prostate cancer. BJU Int 2018; 121: 716-24. doi: 10.1111/bju.13983van den BosWScheltemaMJSiriwardanaARKalsbeekAMFThompsonJETingFFocal irreversible electroporation as primary treatment for localized prostate cancer. BJU Int2018; 121: 716-24. doi: 10.1111/bju.13983Open DOISearch in Google Scholar
Onik G, Mikus P, Rubinsky B. Irreversible electroporation: Implications for prostate ablation. Technol Cancer Res Treat 2007; 6: 295-300. doi: 10.1177/153303460700600405OnikGMikusPRubinskyB.Irreversible electroporation: Implications for prostate ablation. Technol Cancer Res Treat2007; 6: 295-300. doi: 10.1177/153303460700600405Open DOISearch in Google Scholar
Onik G, Rubinsky B. Irreversible electroporation: first patient experience focal therapy of prostate cancer. In: Irreversible electroporation. [internet]. 1970: 235-47. [cited 2024 Oct 15]. doi: 10.1007/978-3-642-05420-4_10. Available at: https://www.researchgate.net/publication/225882920OnikGRubinskyB.Irreversible electroporation: first patient experience focal therapy of prostate cancer. In: Irreversible electroporation. [internet]. 1970: 235-47. [cited 2024 Oct 15]. doi: 10.1007/978-3-642-05420-4_10. Available at: https://www.researchgate.net/publication/225882920Open DOISearch in Google Scholar
Valerio M, Stricker PD, Ahmed HU, Dickinson L, Ponsky L, Shnier R, et al. Initial assessment of safety and clinical feasibility of irreversible electroporation in the focal treatment of prostate cancer. Prostate Cancer Prostatic Dis 2014; 17: 343-7. doi: 10.1038/pcan.2014.33ValerioMStrickerPDAhmedHUDickinsonLPonskyLShnierRInitial assessment of safety and clinical feasibility of irreversible electroporation in the focal treatment of prostate cancer. Prostate Cancer Prostatic Dis2014; 17: 343-7. doi: 10.1038/pcan.2014.33Open DOISearch in Google Scholar
Van den Bos W, De Bruin D, Veelo D, Postema AW1, Muller BG1, Varkarakis IM, et al. Quality of life and safety outcomes following irreversible electroporation treatment for prostate cancer: results from a phase I-II study. J Cancer Sci Ther 2015; 7: 312-21. doi: 10.4172/1948van den BosWDe BruinDVeeloDPostemaAWIMullerBGIVarkarakisIMQuality of life and safety outcomes following irreversible electroporation treatment for prostate cancer: results from a phase I-II study. J Cancer Sci Ther2015; 7: 312-21. doi: 10.4172/1948Open DOISearch in Google Scholar
Tian G, Guan J, Chu Y, Zhao Q, Jiang T. Immunomodulatory effect of irreversible electroporation alone and its cooperating with immuno-therapy in pancreatic cancer. Front Oncol 2021; 11: 712042. doi: 10.3389/fonc.2021.712042TianGGuanJChuYZhaoQJiangT.Immunomodulatory effect of irreversible electroporation alone and its cooperating with immuno-therapy in pancreatic cancer. Front Oncol2021; 11: 712042. doi: 10.3389/fonc.2021.712042Open DOISearch in Google Scholar
Kwon D, McFarland K, Velanovich V, Martin RCG. Borderline and locally advanced pancreatic adenocarcinoma margin accentuation with intraoperative irreversible electroporation. Surgery 2014; 156: 910-20. doi: 10.1016/j. surg.2014.06.058KwonDMcFarlandKVelanovichVMartinRCG.Borderline and locally advanced pancreatic adenocarcinoma margin accentuation with intraoperative irreversible electroporation. Surgery2014; 156: 910-20. doi: 10.1016/j. surg.2014.06.058Open DOISearch in Google Scholar
Holland MM, Bhutiani N, Kruse EJ, Weiss MJ, Christein JD, White RR, et al. A prospective, multi-institution assessment of irreversible electroporation for treatment of locally advanced pancreatic adenocarcinoma: initial outcomes from the AHPBA pancreatic registry. HPB (Oxford) 2019; 21: 1024-31. doi: 10.1016/j.hpb.2018.12.004HollandMMBhutianiNKruseEJWeissMJChristeinJDWhiteRRA prospective, multi-institution assessment of irreversible electroporation for treatment of locally advanced pancreatic adenocarcinoma: initial outcomes from the AHPBA pancreatic registry. HPB (Oxford)2019; 21: 1024-31. doi: 10.1016/j.hpb.2018.12.004Open DOISearch in Google Scholar
Belfiore MP, Ronza FM, Romano F, Ianniello GP, De Lucia G, Gallo C, et al. Percutaneous CT-guided irreversible electroporation followed by chemotherapy as a novel neoadjuvant protocol in locally advanced pancreatic cancer: our preliminary experience. Int J Surg 2015; 21(Suppl 1): S34-9. doi: 10.1016/j.ijsu.2015.06.049BelfioreMPRonzaFMRomanoFIannielloGPDe LuciaGGalloCPercutaneous CT-guided irreversible electroporation followed by chemotherapy as a novel neoadjuvant protocol in locally advanced pancreatic cancer: our preliminary experience. Int J Surg2015; 21(Suppl 1): S34-9. doi: 10.1016/j.ijsu.2015.06.049Open DOISearch in Google Scholar
Spiliopoulos S, Reppas L, Filippiadis D, Delvecchio A, Conticchio M, Memeo R, et al. Irreversible electroporation for the management of pancreatic cancer: current data and future directions. World J Gastroenterol 2023; 29: 223-31. doi: 10.3748/wjg.v29.i2.223SpiliopoulosSReppasLFilippiadisDDelvecchioAConticchioMMemeoRIrreversible electroporation for the management of pancreatic cancer: current data and future directions. World J Gastroenterol2023; 29: 223-31. doi: 10.3748/wjg.v29.i2.223Open DOISearch in Google Scholar
Stephens K, Philips PP, Egger ME, Scoggins CR, McMasters KM, Martin RCG. Multi-institutional review of adverse events associated with irreversible electroporation in the treatment of locally advanced pancreatic cancer. Surgery 2024; 175: 704-11. doi: 10.1016/j.surg.2023.08.042StephensKPhilipsPPEggerMEScogginsCRMcMastersKMMartinRCG.Multi-institutional review of adverse events associated with irreversible electroporation in the treatment of locally advanced pancreatic cancer. Surgery2024; 175: 704-11. doi: 10.1016/j.surg.2023.08.042Open DOISearch in Google Scholar
Shuiqing H, Sheng L. Is irreversible electroporation (IRE) an effective and safe ablation method for local advanced pancreatic cancer: a meta-analysis. Health Sciences Review 2022; 3: 100029. doi: 10.1016/j. hsr.2022.100029ShuiqingHShengL.Is irreversible electroporation (IRE) an effective and safe ablation method for local advanced pancreatic cancer: a meta-analysis. Health Sciences Review2022; 3: 100029. doi: 10.1016/j. hsr.2022.100029Open DOISearch in Google Scholar
Woeste MR, Wilson KD, Kruse EJ, Weiss MJ, Christein JD, White RR, et al. Optimizing patient selection for irreversible electroporation of locally advanced pancreatic cancer: analyses of survival. Front Oncol 2022; 11: 817220. doi: 10.3389/fonc.2021.817220WoesteMRWilsonKDKruseEJWeissMJChristeinJDWhiteRROptimizing patient selection for irreversible electroporation of locally advanced pancreatic cancer: analyses of survival. Front Oncol2022; 11: 817220. doi: 10.3389/fonc.2021.817220Open DOISearch in Google Scholar
Pishvaian MJ, Blais EM, Brody JR, Lyons E, DeArbeloa P, Hendifar A, et al. Overall survival in patients with pancreatic cancer receiving matched therapies following molecular profiling: a retrospective analysis of the Know Your Tumor registry trial. Lancet Oncol 2020; 21: 508-18. doi: 10.1016/S1470-2045(20)30074-7PishvaianMJBlaisEMBrodyJRLyonsEDeArbeloaPHendifarAOverall survival in patients with pancreatic cancer receiving matched therapies following molecular profiling: a retrospective analysis of the Know Your Tumor registry trial. Lancet Oncol2020; 21: 508-18. doi: 10.1016/S1470-2045(20)30074-7Open DOISearch in Google Scholar
He C, Wang J, Sun S, Zhang Y, Li S. Immunomodulatory effect after irreversible electroporation in patients with locally advanced pancreatic cancer. J Oncol 2019; 2019: 9346017. doi: 10.1155/2019/9346017HeCWangJSunSZhangYLiS.Immunomodulatory effect after irreversible electroporation in patients with locally advanced pancreatic cancer. J Oncol2019; 2019: 9346017. doi: 10.1155/2019/9346017Open DOISearch in Google Scholar
Dai Z, Wang Z, Lei K, Liao J, Peng Z, Lin M, et al. Irreversible electroporation induces CD8+ T cell immune response against post-ablation hepatocellular carcinoma growth. Cancer Lett. 2021; 503: 1-10. doi: 10.1016/j. canlet.2021.01.001DaiZWangZLeiKLiaoJPengZLinMIrreversible electroporation induces CD8+ T cell immune response against post-ablation hepatocellular carcinoma growth. Cancer Lett. 2021; 503: 1-10. doi: 10.1016/j. canlet.2021.01.001Open DOISearch in Google Scholar
Sugimoto K, Kakimi K, Takeuchi H, Fujieda N, Saito K, Sato E, et al. Irreversible electroporation versus radiofrequency ablation: comparison of systemic immune responses in patients with hepatocellular carcinoma. J Vasc Interv Radiol 2019; 30: 845-53.e6. doi: 10.1016/j.jvir.2019.03.002SugimotoKKakimiKTakeuchiHFujiedaNSaitoKSatoEIrreversible electroporation versus radiofrequency ablation: comparison of systemic immune responses in patients with hepatocellular carcinoma. J Vasc Interv Radiol2019; 30: 845-53.e6. doi: 10.1016/j.jvir.2019.03.002Open DOISearch in Google Scholar
Lu LC, Shao YY, Chan SY, Hsu CH, Cheng AL. Clinical characteristics of advanced hepatocellular carcinoma patients with prolonged survival in the era of anti-angiogenic targeted-therapy. Anticancer Res 2014; 34: 1047-52. doi: 10.1016/j.jvir.2019.03.002LuLCShaoYYChanSYHsuCHChengAL.Clinical characteristics of advanced hepatocellular carcinoma patients with prolonged survival in the era of anti-angiogenic targeted-therapy. Anticancer Res2014; 34: 1047-52. doi: 10.1016/j.jvir.2019.03.002Open DOISearch in Google Scholar
Dai Z, Wang Z, Lei K, Liao J, Peng Z, Lin M, et al. Irreversible electroporation induces CD8+ T cell immune response against post-ablation hepatocellular carcinoma growth. Cancer Lett 2021; 503: 1-10. doi: 10.1016/j. canlet.2021.01.001DaiZWangZLeiKLiaoJPengZLinMIrreversible electroporation induces CD8+ T cell immune response against post-ablation hepatocellular carcinoma growth. Cancer Lett2021; 503: 1-10. doi: 10.1016/j. canlet.2021.01.001Open DOISearch in Google Scholar
Narayanan G, Koethe Y, Gentile N. Irreversible electroporation of the hepatobiliary system: current utilization and future avenues. Medicina (Kaunas) 2024; 60: 251. doi: 10.3390/medicina60020251NarayananGKoetheYGentileN.Irreversible electroporation of the hepatobiliary system: current utilization and future avenues. Medicina (Kaunas)2024; 60: 251. doi: 10.3390/medicina60020251Open DOISearch in Google Scholar
Yang Y, Qin Z, Du D, Wu Y, Qiu S, Mu F, et al. Safety and short-term efficacy of irreversible electroporation and allogenic natural killer cell immunotherapy combination in the treatment of patients with unresectable primary liver cancer. Cardiovasc Intervent Radiol 2019; 42: 48-59. doi: 10.1007/s00270-018-2069-yYangYQinZDuDWuYQiuSMuFSafety and short-term efficacy of irreversible electroporation and allogenic natural killer cell immunotherapy combination in the treatment of patients with unresectable primary liver cancer. Cardiovasc Intervent Radiol2019; 42: 48-59. doi: 10.1007/s00270-018-2069-yOpen DOISearch in Google Scholar
Guo X, Du F, Liu Q, Guo Y, Wang Q, Huang W, et al. Immunological effect of irreversible electroporation on hepatocellular carcinoma. BMC Cancer 2021; 21: 443. doi: 10.1186/s12885-021-08176-xGuoXDuFLiuQGuoYWangQHuangWImmunological effect of irreversible electroporation on hepatocellular carcinoma. BMC Cancer2021; 21: 443. doi: 10.1186/s12885-021-08176-xOpen DOISearch in Google Scholar
Eller A, Schmid A, Schmidt J, May M, Brand M, Saake M, et al. Local control of perivascular malignant liver lesions using percutaneous irreversible electroporation: initial experiences. Cardiovasc Intervent Radiol 2015; 38: 152-9. doi: 10.1007/s00270-014-0898-xEllerASchmidASchmidtJMayMBrandMSaakeMLocal control of perivascular malignant liver lesions using percutaneous irreversible electroporation: initial experiences. Cardiovasc Intervent Radiol2015; 38: 152-9. doi: 10.1007/s00270-014-0898-xOpen DOISearch in Google Scholar
Beyer LP, Pregler B, Michalik K, Niessen C, Dollinger M, Müller M, et al. Evaluation of a robotic system for irreversible electroporation (IRE) of malignant liver tumors: initial results. Int J Comput Assist Radiol Surg 2017; 12: 803-9. doi: 10.1007/s11548-016-1485-1BeyerLPPreglerBMichalikKNiessenCDollingerMMüllerMEvaluation of a robotic system for irreversible electroporation (IRE) of malignant liver tumors: initial results. Int J Comput Assist Radiol Surg2017; 12: 803-9. doi: 10.1007/s11548-016-1485-1Open DOISearch in Google Scholar
Hitpass L, Distelmaier M, Neumann UP, Schöning W, Isfort P, Keil S, Kuhl CK, et al. Recurrent colorectal liver metastases in the liver remnant after major liver surgery IRE as a salvage local treatment when resection and thermal ablation are unsuitable. Cardiovasc Intervent Radiol 2022; 45: 182-9. doi: 10.1007/s00270-021-02981-4HitpassLDistelmaierMNeumannUPSchöningWIsfortPKeilSKuhlCKRecurrent colorectal liver metastases in the liver remnant after major liver surgery IRE as a salvage local treatment when resection and thermal ablation are unsuitable. Cardiovasc Intervent Radiol2022; 45: 182-9. doi: 10.1007/s00270-021-02981-4Open DOISearch in Google Scholar
Buijs M, Zondervan PJ, de Bruin DM, van Lienden KP, Bex A, van Delden OM. Feasibility and safety of irreversible electroporation (IRE) in patients with small renal masses: results of a prospective study. Urolo Oncol 2019; 37: 183.e1-183.e8. doi: 10.1016/j.urolonc.2018.11.008BuijsMZondervanPJde BruinDMvan LiendenKPBexAvan DeldenOM.Feasibility and safety of irreversible electroporation (IRE) in patients with small renal masses: results of a prospective study. Urolo Oncol2019; 37: 183.e1-183.e8. doi: 10.1016/j.urolonc.2018.11.008Open DOISearch in Google Scholar
Trimmer CK, Khosla A, Morgan M, Stephenson SL, Ozayar A, Cadeddu JA. Minimally invasive percutaneous treatment of small renal tumors with irreversible electroporation: a single-center experience. J Vasc Interv Radiol 2015; 26: 1465-71. doi: 10.1016/j.jvir.2015.06.028TrimmerCKKhoslaAMorganMStephensonSLOzayarACadedduJA.Minimally invasive percutaneous treatment of small renal tumors with irreversible electroporation: a single-center experience. J Vasc Interv Radiol2015; 26: 1465-71. doi: 10.1016/j.jvir.2015.06.028Open DOISearch in Google Scholar
Narayanan G, Doshi MH. Irreversible electroporation (IRE) in renal tumors. Curr Urol Rep 2016; 17: 1-7. doi: 10.1007/s11934-015-0571-1NarayananGDoshiMH.Irreversible electroporation (IRE) in renal tumors. Curr Urol Rep2016; 17: 1-7. doi: 10.1007/s11934-015-0571-1Open DOISearch in Google Scholar
Hilton A, Kourounis G, Georgiades F. Irreversible electroporation in renal tumours: a systematic review of safety and early oncological outcomes. Urologia 2022; 89: 329-37. doi: 10.1177/03915603221077590HiltonAKourounisGGeorgiadesF.Irreversible electroporation in renal tumours: a systematic review of safety and early oncological outcomes. Urologia2022; 89: 329-37. doi: 10.1177/03915603221077590Open DOISearch in Google Scholar
Canvasser NE, Sorokin I, Lay AH, Morgan MSC, Ozayar A, Trimme C, et al. Irreversible electroporation of small renal masses: suboptimal oncologic efficacy in an early series. World J Urol 2017; 35: 1549-55. doi: 10.1007/s00345-017-2025-5CanvasserNESorokinILayAHMorganMSCOzayarATrimmeCIrreversible electroporation of small renal masses: suboptimal oncologic efficacy in an early series. World J Urol2017; 35: 1549-55. doi: 10.1007/s00345-017-2025-5Open DOISearch in Google Scholar
Pech M, Janitzky A, Wendler JJ, Morgan MSC, Ozayar A, Trimmer C, et al. Irreversible electroporation of renal cell carcinoma: a first-in-man phase i clinical study. Cardiovasc Intervent Radiol 2011; 34: 132-8. doi: 10.1007/s00270-010-9964-1PechMJanitzkyAWendlerJJMorganMSCOzayarATrimmerCIrreversible electroporation of renal cell carcinoma: a first-in-man phase i clinical study. Cardiovasc Intervent Radiol2011; 34: 132-8. doi: 10.1007/s00270-010-9964-1Open DOISearch in Google Scholar
Deodhar A, Monette S, Single GW, Hamilton WC Jr, Thornton R, Maybody M, et al. Renal tissue ablation with irreversible electroporation: preliminary results in a porcine model. Urology 2011; 77: 754-60. doi: 10.1016/j.urology.2010.08.036DeodharAMonetteSSingleGWHamilton WCJrThorntonRMaybodyMRenal tissue ablation with irreversible electroporation: preliminary results in a porcine model. Urology2011; 77: 754-60. doi: 10.1016/j.urology.2010.08.036Open DOISearch in Google Scholar
Wendler JJ, Pech M, Fischbach F, Jürgens J, Friebe B, Baumunk D, et al. Initial assessment of the efficacy of irreversible electroporation in the focal treatment of localized renal cell carcinoma with delayed-interval kidney tumor resection (Irreversible Electroporation of Kidney Tumors Before Partial Nephrectomy [IRENE] trial an ablate-and-resect pilot study). Urology 2018; 114: 224-32. doi: 10.1016/j.urology.2017.12.016WendlerJJPechMFischbachFJürgensJFriebeBBaumunkDInitial assessment of the efficacy of irreversible electroporation in the focal treatment of localized renal cell carcinoma with delayed-interval kidney tumor resection (Irreversible Electroporation of Kidney Tumors Before Partial Nephrectomy [IRENE] trial an ablate-and-resect pilot study). Urology2018; 114: 224-32. doi: 10.1016/j.urology.2017.12.016Open DOISearch in Google Scholar
Neal RE, Garcia PA, Kavnoudias H, Rosenfeldt F, Mclean CA, Earl V, Bergman J, et al. In vivo irreversible electroporation kidney ablation: experimentally correlated numerical models. IEEE Trans Biomed Eng 2015; 62: 561-9. doi: 10.1109/TBME.2014.2360374NealREGarciaPAKavnoudiasHRosenfeldtFMcleanCAEarlVBergmanJIn vivo irreversible electroporation kidney ablation: experimentally correlated numerical models. IEEE Trans Biomed Eng2015; 62: 561-9. doi: 10.1109/TBME.2014.2360374Open DOISearch in Google Scholar
Deodhar A, Monette S, Single GW, Hamilton WC Jr, Thornton R, Maybody M, et al. Renal tissue ablation with irreversible electroporation: preliminary results in a porcine model. Urology 2011; 77: 754-60. doi: 10.1016/j.urol-ogy.2010.08.036DeodharAMonetteSSingleGWHamilton WCJrThorntonRMaybodyMRenal tissue ablation with irreversible electroporation: preliminary results in a porcine model. Urology2011; 77: 754-60. doi: 10.1016/j.urol-ogy.2010.08.036Open DOISearch in Google Scholar
Thomson KR, Cheung W, Ellis SJ, Federman D, Kavnoudias H, Loader-Oliver D, et al. Investigation of the safety of irreversible electroporation in humans. J Vasc Interv Radiol 2011; 22: 611-21. doi: 10.1016/j.jvir.2010.12.014ThomsonKRCheungWEllisSJFedermanDKavnoudiasHLoader-OliverDInvestigation of the safety of irreversible electroporation in humans. J Vasc Interv Radiol2011; 22: 611-21. doi: 10.1016/j.jvir.2010.12.014Open DOISearch in Google Scholar
Min Wah T, Lenton J, Smith J, Bassett P, Jagdev S, Ralph C, et al. Irreversible electroporation (IRE) in renal cell carcinoma (RCC): a mid-term clinical experience. Eur Radiol 2021; 31: 7491-9. doi: 10.1007/s00330-021-07846-5Min WahTLentonJSmithJBassettPJagdevSRalphCIrreversible electroporation (IRE) in renal cell carcinoma (RCC): a mid-term clinical experience. Eur Radiol2021; 31: 7491-9. doi: 10.1007/s00330-021-07846-5Open DOISearch in Google Scholar
Sorokin I, Canvasser N, Johnson B, Lucas E, Cadeddu JA. Irreversible electroporation for renal ablation does not cause significant injury to adjacent ureter or bowel in a porcine model. J Endourol 2021; 35: 873-7. doi: 10.1089/END.2020.0856SorokinICanvasserNJohnsonBLucasECadedduJA.Irreversible electroporation for renal ablation does not cause significant injury to adjacent ureter or bowel in a porcine model. J Endourol2021; 35: 873-7. doi: 10.1089/END.2020.0856Open DOISearch in Google Scholar
Usman M, Moore W, Talati R, Watkins K, Bilfinger T V. Irreversible electroporation of lung neoplasm: a case series. Med Sci Monit 2012; 18: CS43-7. doi: 10.12659/MSM.882888UsmanMMooreWTalatiRWatkinsKBilfingerT V.Irreversible electroporation of lung neoplasm: a case series. Med Sci Monit2012; 18: CS43-7. doi: 10.12659/MSM.882888Open DOISearch in Google Scholar
Ricke J, Jürgens JHW, Deschamps F, Tselikas L, Uhde K, Kosiek O, et al. Irreversible electroporation (IRE) fails to demonstrate efficacy in a prospective multicenter phase II trial on lung malignancies: The ALICE Trial. Cardiovasc Intervent Radiol 2015; 38: 401-8. doi: 10.1007/s00270-014-1049-0RickeJJürgensJHWDeschampsFTselikasLUhdeKKosiekOIrreversible electroporation (IRE) fails to demonstrate efficacy in a prospective multicenter phase II trial on lung malignancies: The ALICE Trial. Cardiovasc Intervent Radiol2015; 38: 401-8. doi: 10.1007/s00270-014-1049-0Open DOISearch in Google Scholar
Garcia PA, Kos B, Rossmeisl JH, Pavliha D, Miklavčič D, Davalos R V. Predictive therapeutic planning for irreversible electroporation treatment of spontaneous malignant glioma. Med Phys 2017; 44: 4968-80. doi: 10.1002/mp.12401GarciaPAKosBRossmeislJHPavlihaDMiklavčičDDavalosR V.Predictive therapeutic planning for irreversible electroporation treatment of spontaneous malignant glioma. Med Phys2017; 44: 4968-80. doi: 10.1002/mp.12401Open DOISearch in Google Scholar
Narayanan G. Irreversible electroporation. Semin Intervent Radiol 2015; 32: 349-55. doi: 10.1055/s-0035-1564706NarayananG.Irreversible electroporation. Semin Intervent Radiol2015; 32: 349-55. doi: 10.1055/s-0035-1564706Open DOISearch in Google Scholar
Cannon R, Ellis S, Hayes D, Narayanan G, Martin RCG. Safety and early efficacy of irreversible electroporation for hepatic tumors in proximity to vital structures. J Surg Oncol 2013; 107: 544-9. doi: 10.1002/jso.23280CannonREllisSHayesDNarayananGMartinRCG.Safety and early efficacy of irreversible electroporation for hepatic tumors in proximity to vital structures. J Surg Oncol2013; 107: 544-9. doi: 10.1002/jso.23280Open DOISearch in Google Scholar
Aycock KN, Davalos RV. Irreversible electroporation: background, theory, and review of recent developments in clinical oncology. Bioelectricity 2019; 1: 214-34. doi: 10.1089/BIOE.2019.0029AycockKNDavalosRV.Irreversible electroporation: background, theory, and review of recent developments in clinical oncology. Bioelectricity2019; 1: 214-34. doi: 10.1089/BIOE.2019.0029Open DOISearch in Google Scholar
Mali B, Jarm T, Jager F, Miklavčič D. An algorithm for synchronization of in vivo electroporation with ECG. J Med Eng Technol 2005; 29: 288-96. doi: 10.1080/03091900512331332591MaliBJarmTJagerFMiklavčičD.An algorithm for synchronization of in vivo electroporation with ECG. J Med Eng Technol2005; 29: 288-96. doi: 10.1080/03091900512331332591Open DOISearch in Google Scholar
Arena CB, Sano MB, Rossmeisl JH, Caldwell JL, Garcia PA, Rylander MN, et al. High-frequency irreversible electroporation (H-FIRE) for non-thermal ablation without muscle contraction. Biomed Eng Online 2011; 10: 102. doi: 10.1186/1475-925X-10-102ArenaCBSanoMBRossmeislJHCaldwellJLGarciaPARylanderMNHigh-frequency irreversible electroporation (H-FIRE) for non-thermal ablation without muscle contraction. Biomed Eng Online2011; 10: 102. doi: 10.1186/1475-925X-10-102Open DOISearch in Google Scholar
Partridge BR, O’Brien TJ, Lorenzo MF, Coutermarsh-Ott SL, Barry SL, Stadler K, et al. High-frequency irreversible electroporation for treatment of primary liver cancer: a proof-of-principle study in canine hepatocellular carcinoma. J Vasc Interv Radiol 2020; 31: 482-91.e4. doi: 10.1016/j. jvir.2019.10.015PartridgeBRO’BrienTJLorenzoMFCoutermarsh-OttSLBarrySLStadlerKHigh-frequency irreversible electroporation for treatment of primary liver cancer: a proof-of-principle study in canine hepatocellular carcinoma. J Vasc Interv Radiol2020; 31: 482-91.e4. doi: 10.1016/j. jvir.2019.10.015Open DOISearch in Google Scholar
Bhonsle S, Arena C, Sweeney D, Davalos R. Mitigation of impedance changes due to electroporation therapy using bursts of high-frequency bipolar pulses. Biomed Eng Online 2015; 14(Suppl 3): S3. doi: 10.1186/1475-925X-14-S3-S3BhonsleSArenaCSweeneyDDavalosR.Mitigation of impedance changes due to electroporation therapy using bursts of high-frequency bipolar pulses. Biomed Eng Online2015; 14(Suppl 3): S3. doi: 10.1186/1475-925X-14-S3-S3Open DOISearch in Google Scholar
Siddiqui IA, Latouche EL, DeWitt MR, Swet JH, Kirks RC, Baker EH, et al. Induction of rapid, reproducible hepatic ablations using next-generation, high frequency irreversible electroporation (H-FIRE) in vivo. HPB (Oxford) 2016; 18: 726-34. doi: 10.1016/j.hpb.2016.06.015SiddiquiIALatoucheELDeWittMRSwetJHKirksRCBakerEHInduction of rapid reproducible hepatic ablations using next-generation, high frequency irreversible electroporation (H-FIRE) in vivo. HPB (Oxford)2016; 18: 726-34. doi: 10.1016/j.hpb.2016.06.015Open DOISearch in Google Scholar
Jacobs IV EJ, Campelo SN, Charlton A, Altreuter S, Davalos R V. Characterizing reversible, irreversible, and calcium electroporation to generate a burst-dependent dynamic conductivity curve. Bioelectrochemistry 2024; 155: 108580. doi: 10.1016/j.bioelechem.2023.108580JacobsEJIVCampeloSNCharltonAAltreuterSDavalosR V.Characterizing reversible, irreversible, and calcium electroporation to generate a burst-dependent dynamic conductivity curve. Bioelectrochemistry2024; 155: 108580. doi: 10.1016/j.bioelechem.2023.108580Open DOISearch in Google Scholar
Aycock KN, Vadlamani RA, Jacobs EJ, Imran KM, Verbridge SS, Allen IC, et al. Experimental and numerical investigation of parameters affecting high-frequency irreversible electroporation for prostate cancer ablation. J Biomech Eng 2022; 144: 061003. doi: 10.1115/1.4053595AycockKNVadlamaniRAJacobsEJImranKMVerbridgeSSAllenICExperimental and numerical investigation of parameters affecting high-frequency irreversible electroporation for prostate cancer ablation. J Biomech Eng2022; 144: 061003. doi: 10.1115/1.4053595Open DOISearch in Google Scholar
Ringel-Scaia VM, Beitel-White N, Lorenzo MF, Brock RM, Huie KE, Coutermarsh-Ott S, Eden K, et al. High-frequency irreversible electroporation is an effective tumor ablation strategy that induces immunologic cell death and promotes systemic anti-tumor immunity. EBioMedicine 2019; 44: 112-5. doi: 10.1016/j.ebiom.2019.05.036Ringel-ScaiaVMBeitel-WhiteNLorenzoMFBrockRMHuieKECoutermarsh-OttSEdenKHigh-frequency irreversible electroporation is an effective tumor ablation strategy that induces immunologic cell death and promotes systemic anti-tumor immunity. EBioMedicine2019; 44: 112-5. doi: 10.1016/j.ebiom.2019.05.036Open DOISearch in Google Scholar
Campelo SN, Lorenzo MF, Partridge B, Alinezhadbalalami N, Kani Y, Garcia J, et al. High-frequency irreversible electroporation improves survival and immune cell infiltration in rodents with malignant gliomas. Front Oncol 2023; 13: 1171278. doi: 10.3389/fonc.2023.1171278CampeloSNLorenzoMFPartridgeBAlinezhadbalalamiNKaniYGarciaJHigh-frequency irreversible electroporation improves survival and immune cell infiltration in rodents with malignant gliomas. Front Oncol2023; 13: 1171278. doi: 10.3389/fonc.2023.1171278Open DOISearch in Google Scholar
Hay AN, Aycock KN, Lorenzo M, David K, Coutermarsh-Ott S, Salameh Z, et al. Investigation of high frequency irreversible electroporation for canine spontaneous primary lung tumor ablation. Biomedicines 2024; 12: 2038. doi: 10.3390/biomedicines12092038HayANAycockKNLorenzoMDavidKCoutermarsh-OttSSalamehZInvestigation of high frequency irreversible electroporation for canine spontaneous primary lung tumor ablation. Biomedicines2024; 12: 2038. doi: 10.3390/biomedicines12092038Open DOISearch in Google Scholar
Xing R, Ji S, Li X, Gong T, Jiang Q. High-frequency irreversible electroporation ablation for the prostate in Beagle dogs. Transl Androl Urol 2024; 13: 2016-26. doi: 10.21037/tau-24-108XingRJiSLiXGongTJiangQ.High-frequency irreversible electroporation ablation for the prostate in Beagle dogs. Transl Androl Urol2024; 13: 2016-26. doi: 10.21037/tau-24-108Open DOISearch in Google Scholar
Dong S, Wang H, Zhao Y, Sun Y, Yao C. First human trial of high-frequency irreversible electroporation therapy for prostate cancer. Technol Cancer Res Treat 2018; 17: 1-9. doi: 10.1177/1533033818789692DongSWangHZhaoYSunYYaoC.First human trial of high-frequency irreversible electroporation therapy for prostate cancer. Technol Cancer Res Treat2018; 17: 1-9. doi: 10.1177/1533033818789692Open DOISearch in Google Scholar
Wang H, Xue W, Yan W, Yin L, Dong B, He B, et al. Extended focal ablation of localized prostate cancer with high-frequency irreversible electroporation: a nonrandomized controlled trial. JAMA Surg 2022; 157: 693-700. doi: 10.1001/jamasurg.2022.2230WangHXueWYanWYinLDongBHeBExtended focal ablation of localized prostate cancer with high-frequency irreversible electroporation: a nonrandomized controlled trial. JAMA Surg2022; 157: 693-700. doi: 10.1001/jamasurg.2022.2230Open DOISearch in Google Scholar
Ekanem E, Reddy VY, Schmidt B, Reichlin T, Neven K, Metzner A, et al. Multi-national survey on the methods, efficacy, and safety on the postapproval clinical use of pulsed field ablation (MANIFEST-PF). Europace 2022; 24: 1256-66. doi: 10.1093/europace/euac050EkanemEReddyVYSchmidtBReichlinTNevenKMetznerAMulti-national survey on the methods, efficacy, and safety on the postapproval clinical use of pulsed field ablation (MANIFEST-PF). Europace2022; 24: 1256-66. doi: 10.1093/europace/euac050Open DOISearch in Google Scholar
Reddy VY, Neuzil P, Koruth JS, Petru J, Funosako M, Cochet H, et al. Pulsed field ablation for pulmonary vein isolation in atrial fibrillation. J Am Coll Cardiol 2019; 74: 315-26. doi: 10.1016/j.jacc.2019.04.021ReddyVYNeuzilPKoruthJSPetruJFunosakoMCochetHPulsed field ablation for pulmonary vein isolation in atrial fibrillation. J Am Coll Cardiol2019; 74: 315-26. doi: 10.1016/j.jacc.2019.04.021Open DOISearch in Google Scholar
Reddy VY, Anic A, Koruth J, Petru J, Funasako M, Minami K, et al. Pulsed field ablation in patients with persistent atrial fibrillation. J Am Coll Cardiol 2020; 76: 1068-80. doi: 10.1016/j.jacc.2020.07.007ReddyVYAnicAKoruthJPetruJFunasakoMMinamiKPulsed field ablation in patients with persistent atrial fibrillation. J Am Coll Cardiol2020; 76: 1068-80. doi: 10.1016/j.jacc.2020.07.007Open DOISearch in Google Scholar
Loh P, Van Es R, Groen MHA, Neven K, Kassenberg W, Wittkampf FHM, et al. Pulmonary vein isolation with single pulse irreversible electroporation: a first in human study in 10 patients with atrial fibrillation. Circ Arrhythm Electrophysiol 2020; 13: E008192. doi: 10.1161/CIRCEP.119.008192LohPVan EsRGroenMHANevenKKassenbergWWittkampfFHMPulmonary vein isolation with single pulse irreversible electroporation: a first in human study in 10 patients with atrial fibrillation. Circ Arrhythm Electrophysiol2020; 13: E008192. doi: 10.1161/CIRCEP.119.008192Open DOISearch in Google Scholar
Reddy VY, Anter E, Rackauskas G, Peichl P, Koruth JS, Petru J, et al. Latticetip focal ablation catheter that toggles between radiofrequency and pulsed field energy to treat atrial fibrillation: a first-in-human trial. Circ Arrhythm Electrophysiol 2020; 13: E008718. doi: 10.1161/CIRCEP.120.008718ReddyVYAnterERackauskasGPeichlPKoruthJSPetruJLatticetip focal ablation catheter that toggles between radiofrequency and pulsed field energy to treat atrial fibrillation: a first-in-human trial. Circ Arrhythm Electrophysiol2020; 13: E008718. doi: 10.1161/CIRCEP.120.008718Open DOISearch in Google Scholar
Reddy VY, Koruth J, Jais P, Petru J, Timko F, Skalsky I, et al. Ablation of atrial fibrillation with pulsed electric fields: an ultra-rapid, tissue-selective modality for cardiac ablation. JACC Clin Electrophysiol 2018; 4: 987-95. doi: 10.1016/j.jacep.2018.04.005ReddyVYKoruthJJaisPPetruJTimkoFSkalskyIAblation of atrial fibrillation with pulsed electric fields: an ultra-rapid, tissue-selective modality for cardiac ablation. JACC Clin Electrophysiol2018; 4: 987-95. doi: 10.1016/j.jacep.2018.04.005Open DOISearch in Google Scholar
Kueffer T, Madaffari A, Muehl A, Maurhofer J, Stefenova A, Seiler J, et al. Pulsed-field-vs. cryo-vs. radiofrequency ablation: one-year recurrence rates after pulmonary vein isolation in patients with paroxysmal atrial fibrillation. EP Europace 2023; 25(Suppl 1): euad122.157. doi: 10.1093/europace/euad122.157KuefferTMadaffariAMuehlAMaurhoferJStefenovaASeilerJPulsed-field-vs. cryo-vs. radiofrequency ablation: one-year recurrence rates after pulmonary vein isolation in patients with paroxysmal atrial fibrillation. EP Europace2023; 25(Suppl 1): euad122.157. doi: 10.1093/europace/euad122.157Open DOISearch in Google Scholar
Lavee J, Onik G, Mikus P, Rubinsky B. A novel nonthermal energy source for surgical epicardial atrial ablation: Irreversible electroporation. Heart Surgery Forum 2007; 10: 96-101. doi: 10.1532/HSF98.20061202LaveeJOnikGMikusPRubinskyB.A novel nonthermal energy source for surgical epicardial atrial ablation: Irreversible electroporation. Heart Surgery Forum2007; 10: 96-101. doi: 10.1532/HSF98.20061202Open DOISearch in Google Scholar
Verma A, Haines DE, Boersma LV, Sood N, Natale A, Marchlinski FE, et al. Pulsed field ablation for the treatment of atrial fibrillation: PULSED AF pivotal trial. Circulation 2023; 147: 1422-32. doi: 10.1161/CIRCULATIONAHA.123.063988VermaAHainesDEBoersmaLVSoodNNataleAMarchlinskiFEPulsed field ablation for the treatment of atrial fibrillation: PULSED AF pivotal trial. Circulation2023; 147: 1422-32. doi: 10.1161/CIRCULATIONAHA.123.063988Open DOISearch in Google Scholar
Urbanek L, Bordignon S, Schaack D, Chen S, Tohoku S, Efe TH, et al. Pulsed field versus cryoballoon pulmonary vein isolation for atrial fibrillation: efficacy, safety, and long-term follow-up in a 400-patient cohort. Circ Arrhythm Electrophysiol 2023; 16: 389-98. doi: 10.1161/CIRCEP.123.011920UrbanekLBordignonSSchaackDChenSTohokuSEfeTHPulsed field versus cryoballoon pulmonary vein isolation for atrial fibrillation: efficacy, safety, and long-term follow-up in a 400-patient cohort. Circ Arrhythm Electrophysiol2023; 16: 389-98. doi: 10.1161/CIRCEP.123.011920Open DOISearch in Google Scholar
Tabaja C, Younis A, Hussein AA, Taigen TL, Nakagawa H, Saliba WI, et al. Catheter-based electroporation: a novel technique for catheter ablation of cardiac arrhythmias. JACC Clin Electrophysiol 2023; 9: 2008-23. doi: 10.1016/j.jacep.2023.03.014TabajaCYounisAHusseinAATaigenTLNakagawaHSalibaWICatheter-based electroporation: a novel technique for catheter ablation of cardiac arrhythmias. JACC Clin Electrophysiol2023; 9: 2008-23. doi: 10.1016/j.jacep.2023.03.014Open DOISearch in Google Scholar
Bradley CJ, Haines DE. Pulsed field ablation for pulmonary vein isolation in the treatment of atrial fibrillation. J Cardiovasc Electrophysiol 2020; 31: 2136-47. doi: 10.1111/jce.14414BradleyCJHainesDE.Pulsed field ablation for pulmonary vein isolation in the treatment of atrial fibrillation. J Cardiovasc Electrophysiol2020; 31: 2136-47. doi: 10.1111/jce.14414Open DOISearch in Google Scholar
Sugrue A, Maor E, Ivorra A, Vaidya V, Witt C, Kapa S, et al. Irreversible electroporation for the treatment of cardiac arrhythmias. Expert Rev Cardiovasc Ther 2018; 16: 349-60. doi: 10.1080/14779072.2018.1459185SugrueAMaorEIvorraAVaidyaVWittCKapaSIrreversible electroporation for the treatment of cardiac arrhythmias. Expert Rev Cardiovasc Ther2018; 16: 349-60. doi: 10.1080/14779072.2018.1459185Open DOISearch in Google Scholar
Ueshima E, Schattner M, Mendelsohn R, Gerdes H, Monette S, Takaki H, et al. Transmural ablation of the normal porcine common bile duct with catheter-directed irreversible electroporation is feasible and does not impact duct patency. Gastrointest Endosc 2018; 87: 300.e1-6. doi: 10.1016/j.gie.2017.05.004UeshimaESchattnerMMendelsohnRGerdesHMonetteSTakakiHTransmural ablation of the normal porcine common bile duct with catheter-directed irreversible electroporation is feasible and does not impact duct patency. Gastrointest Endosc2018; 87: 300.e1-6. doi: 10.1016/j.gie.2017.05.004Open DOISearch in Google Scholar
Maor E, Ivorra A, Leor J, Rubinsky B. The effect of irreversible electroporation on blood vessels. Technol Cancer Res Treat 2007; 6: 307-12. doi: 10.1177/153303460700600407MaorEIvorraALeorJRubinskyB.The effect of irreversible electroporation on blood vessels. Technol Cancer Res Treat2007; 6: 307-12. doi: 10.1177/153303460700600407Open DOISearch in Google Scholar
Narayanan G, Bhatia S, Echenique A, Suthar R, Barbery K, Yrizarry J. Vessel patency post irreversible electroporation. Cardiovasc Intervent Radiol 2014; 37: 1523-9. doi: 10.1007/s00270-014-0988-9NarayananGBhatiaSEcheniqueASutharRBarberyKYrizarryJ.Vessel patency post irreversible electroporation. Cardiovasc Intervent Radiol2014; 37: 1523-9. doi: 10.1007/s00270-014-0988-9Open DOISearch in Google Scholar
Koruth JS, Kuroki K, Kawamura I, Brose R, Viswanathan R, Buck ED, et al. Pulsed field ablation versus radiofrequency ablation: esophageal injury in a novel porcine model. Circ Arrhythm Electrophysiol 2020; 13: E008303. doi: 10.1161/CIRCEP.119.008303KoruthJSKurokiKKawamuraIBroseRViswanathanRBuckEDPulsed field ablation versus radiofrequency ablation: esophageal injury in a novel porcine model. Circ Arrhythm Electrophysiol2020; 13: E008303. doi: 10.1161/CIRCEP.119.008303Open DOISearch in Google Scholar
Li W, Fan Q, Ji Z, Qiu X, Li Z. The effects of irreversible electroporation (IRE) on nerves. PLoS One 2011; 6: e18831. doi: 10.1371/journal.pone.0018831LiWFanQJiZQiuXLiZ.The effects of irreversible electroporation (IRE) on nerves. PLoS One2011; 6: e18831. doi: 10.1371/journal.pone.0018831Open DOISearch in Google Scholar
Moshkovits Y, Grynberg D, Heller E, Maizels L, Maor E. Differential effect of high-frequency electroporation on myocardium vs. non-myocardial tissues. Europace 2023; 25: 748-55. doi: 10.1093/europace/euac191MoshkovitsYGrynbergDHellerEMaizelsLMaorE.Differential effect of high-frequency electroporation on myocardium vs. non-myocardial tissues. Europace2023; 25: 748-55. doi: 10.1093/europace/euac191Open DOISearch in Google Scholar
Faroja M, Ahmed M, Appelbaum L, Ben-David E, Moussa M, Sosna J, et al. Irreversible electroporation ablation: is all the damage nonthermal? Radiology 2013; 266: 462-70. doi: 10.1148/radiol.12120609/-/DC1FarojaMAhmedMAppelbaumLBen-DavidEMoussaMSosnaJIrreversible electroporation ablation: is all the damage nonthermal?Radiology2013; 266: 462-70. doi: 10.1148/radiol.12120609/-/DC1Open DOISearch in Google Scholar
Appelbaum L, Ben-David E, Sosna J, Nissenbaum Y, Goldberg SN. US findings after irreversible electroporation ablation: radiologic-pathologic correlation. Radiology 2012; 262: 117-25. doi: 10.1148/radiol.11110475AppelbaumLBen-DavidESosnaJNissenbaumYGoldbergSN.US findings after irreversible electroporation ablation: radiologic-pathologic correlation. Radiology2012; 262: 117-25. doi: 10.1148/radiol.11110475Open DOISearch in Google Scholar
Kos B, Voigt P, Miklavcic D, Moche M. Careful treatment planning enables safe ablation of liver tumors adjacent to major blood vessels by percutaneous irreversible electroporation (IRE). Radiol Oncol 2015; 49: 234-41. doi: 10.1515/raon-2015-0031KosBVoigtPMiklavcicDMocheM.Careful treatment planning enables safe ablation of liver tumors adjacent to major blood vessels by percutaneous irreversible electroporation (IRE). Radiol Oncol2015; 49: 234-41. doi: 10.1515/raon-2015-0031Open DOISearch in Google Scholar
Kranjc M, Kranjc S, Bajd F, Serša G, Serša I, Miklavčič D. Predicting irreversible electroporation-induced tissue damage by means of magnetic resonance electrical impedance tomography. Sci Rep 2017; 7: 10323. doi: 10.1038/s41598-017-10846-5KranjcMKranjcSBajdFSeršaGSeršaIMiklavčičD.Predicting irreversible electroporation-induced tissue damage by means of magnetic resonance electrical impedance tomography. Sci Rep2017; 7: 10323. doi: 10.1038/s41598-017-10846-5Open DOISearch in Google Scholar
Ruarus AH, Vroomen LGPH, Geboers B, van Veldhuisen E, Puijk RS, Nieuwenhuizen S, et al. Percutaneous irreversible electroporation in locally advanced and recurrent pancreatic cancer (PANFIRE-2): a multicenter, prospective, single-arm, phase II study. Radiology 2020; 294: 212-20. doi: 10.1148/radiol.2019191109RuarusAHVroomenLGPHGeboersBvan VeldhuisenEPuijkRSNieuwenhuizenSPercutaneous irreversible electroporation in locally advanced and recurrent pancreatic cancer (PANFIRE-2): a multicenter, prospective, single-arm, phase II study. Radiology2020; 294: 212-20. doi: 10.1148/radiol.2019191109Open DOISearch in Google Scholar
Geboers B, Timmer FEF, Ruarus AH, Pouw JEE, Schouten EAC, Bakker J, et al. Irreversible electroporation and nivolumab combined with intratumoral administration of a toll-like receptor ligand, as a means of in vivo vaccination for metastatic pancreatic ductal adenocarcinoma (Panfire-iii). A phase-I study protocol. Cancers 2021; 13: 3902. doi: 10.3390/cancers13153902GeboersBTimmerFEFRuarusAHPouwJEESchoutenEACBakkerJIrreversible electroporation and nivolumab combined with intratumoral administration of a toll-like receptor ligand, as a means of in vivo vaccination for metastatic pancreatic ductal adenocarcinoma (Panfire-iii). A phase-I study protocol. Cancers2021; 13: 3902. doi: 10.3390/cancers13153902Open DOISearch in Google Scholar
Geboers B, van der Lei S, Kloppenborg LTE, Boon RM, Timmer FE, Puijk RS, et al. Transcatheter CT arteriography-guided irreversible electroporation of locally advanced pancreatic adenocarcinoma: a pictorial essay. J Med Imaging Radiat Oncol 2023; 67: 428-34. doi: 10.1111/1754-9485.13535GeboersBvan der LeiSKloppenborgLTEBoonRMTimmerFEPuijkRSTranscatheter CT arteriography-guided irreversible electroporation of locally advanced pancreatic adenocarcinoma: a pictorial essay. J Med Imaging Radiat Oncol2023; 67: 428-34. doi: 10.1111/1754-9485.13535Open DOISearch in Google Scholar
Miklavcic D, Semrov DS, Mekid H, Mir LM. A validated model of in vivo electric field distribution in tissues for electrochemotherapy and for DNA electrotransfer for gene therapy. Biochim Biophys Acta 2000; 1523: 73-83. doi: 10.1016/S0304-4165(00)00101-XMiklavcicDSemrovDSMekidHMirLM.A validated model of in vivo electric field distribution in tissues for electrochemotherapy and for DNA electrotransfer for gene therapy. Biochim Biophys Acta2000; 1523: 73-83. doi: 10.1016/S0304-4165(00)00101-XOpen DOISearch in Google Scholar
Ivorra A, Rubinsky B. In vivo electrical impedance measurements during and after electroporation of rat liver. Bioelectrochemistry 2007; 70: 287-95. doi: 10.1016/j.bioelechem.2006.10.005IvorraARubinskyB.In vivo electrical impedance measurements during and after electroporation of rat liver. Bioelectrochemistry2007; 70: 287-95. doi: 10.1016/j.bioelechem.2006.10.005Open DOISearch in Google Scholar
Pavšelj N, Bregar Z, Cukjati D, Batiuskaite D, Mir LM, Miklavčič D. The course of tissue permeabilization studied on a mathematical model of a subcutaneous tumor in small animals. IEEE Trans Biomed Eng 2005; 52: 1373-81. doi: 10.1109/TBME.2005.851524PavšeljNBregarZCukjatiDBatiuskaiteDMirLMMiklavčičD.The course of tissue permeabilization studied on a mathematical model of a subcutaneous tumor in small animals. IEEE Trans Biomed Eng2005; 52: 1373-81. doi: 10.1109/TBME.2005.851524Open DOISearch in Google Scholar
Beitel-White N, Lorenzo MF, Zhao Y, Brock RM, Coutermarsh-Ott S, Allen IC, et al. Multi-tissue analysis on the impact of electroporation on electrical and thermal properties. IEEE Trans Biomed Eng 2021; 68: 771-82. doi: 10.1109/TBME.2020.3013572Beitel-WhiteNLorenzoMFZhaoYBrockRMCoutermarsh-OttSAllenICMulti-tissue analysis on the impact of electroporation on electrical and thermal properties. IEEE Trans Biomed Eng2021; 68: 771-82. doi: 10.1109/TBME.2020.3013572Open DOISearch in Google Scholar
Jacobs EJ, Aycock KN, Santos PP, Tuohy JL, Davalos R V. Rapid estimation of electroporation-dependent tissue properties in canine lung tumors using a deep neural network. Biosens Bioelectron 2024; 244: 115777. doi: 10.1016/j.bios.2023.115777JacobsEJAycockKNSantosPPTuohyJLDavalosR V.Rapid estimation of electroporation-dependent tissue properties in canine lung tumors using a deep neural network. Biosens Bioelectron2024; 244: 115777. doi: 10.1016/j.bios.2023.115777Open DOISearch in Google Scholar
Beitel-White N, Bhonsle S, Martin RCG, Davalos RV. Electrical characterization of human biological tissue for irreversible electroporation treatments. Annu Int Conf IEEE Eng Med Biol Soc 2018; 2018: 4170-3. doi: 10.1109/EMBC.2018.8513341Beitel-WhiteNBhonsleSMartinRCGDavalosRV.Electrical characterization of human biological tissue for irreversible electroporation treatments. Annu Int Conf IEEE Eng Med Biol Soc2018; 2018: 4170-3. doi: 10.1109/EMBC.2018.8513341Open DOISearch in Google Scholar
Brock RM, Beitel-White N, Coutermarsh-Ott S, Grider DJ, Lorenzo MF, Ringel-Scaia VM, et al. Patient derived xenografts expand human primary pancreatic tumor tissue availability for ex vivo irreversible electroporation testing. Front Oncol 2020; 10: 843. doi: 10.3389/fonc.2020.00843BrockRMBeitel-WhiteNCoutermarsh-OttSGriderDJLorenzoMFRingel-ScaiaVMPatient derived xenografts expand human primary pancreatic tumor tissue availability for ex vivo irreversible electroporation testing. Front Oncol2020; 10: 843. doi: 10.3389/fonc.2020.00843Open DOISearch in Google Scholar
Kos B, Mattison L, Ramirez D, Cindrič H, Sigg DC, Iaizzo PA, et al. Determination of lethal electric field threshold for pulsed field ablation in ex vivo perfused porcine and human hearts. Front Cardiovasc Med 2023; 10: 1160231. doi:10.3389/fcvm.2023.1160231KosBMattisonLRamirezDCindričHSiggDCIaizzoPADetermination of lethal electric field threshold for pulsed field ablation in ex vivo perfused porcine and human hearts. Front Cardiovasc Med2023; 10: 1160231. doi:10.3389/fcvm.2023.1160231Open DOISearch in Google Scholar
Rao X, Chen S, Alfadhl Y, Chen X, Sun L, Yu L, Zhou J, et al. Pulse width and intensity effects of pulsed electric fields on cancerous and normal skin cells. Sci Rep 2022; 12: 18039. doi: 10.1038/s41598-022-22874-xRaoXChenSAlfadhlYChenXSunLYuLZhouJPulse width and intensity effects of pulsed electric fields on cancerous and normal skin cells. Sci Rep2022; 12: 18039. doi: 10.1038/s41598-022-22874-xOpen DOISearch in Google Scholar
Fesmire CC, Williamson RH, Petrella RA, Kaufman JD, Topasna N, Sano MB. Integrated time nanosecond pulse irreversible electroporation (INSPIRE): assessment of dose, temperature, and voltage on experimental and clinical treatment outcomes. IEEE Trans Biomed Eng 2024; 71: 1511-20. doi:10.1109/TBME.2023.3340718FesmireCCWilliamsonRHPetrellaRAKaufmanJDTopasnaNSanoMB.Integrated time nanosecond pulse irreversible electroporation (INSPIRE): assessment of dose, temperature, and voltage on experimental and clinical treatment outcomes. IEEE Trans Biomed Eng2024; 71: 1511-20. doi:10.1109/TBME.2023.3340718Open DOISearch in Google Scholar
Yun JH, Fang A, Khorshidi F, Habibollahi P, Kutsenko O, Etezadi V, et al. New developments in image-guided percutaneous irreversible electroporation of solid tumors. Curr Oncol Rep 2023; 25: 1213-26. doi: 10.1007/s11912-023-01452-yYunJHFangAKhorshidiFHabibollahiPKutsenkoOEtezadiVNew developments in image-guided percutaneous irreversible electroporation of solid tumors. Curr Oncol Rep2023; 25: 1213-26. doi: 10.1007/s11912-023-01452-yOpen DOISearch in Google Scholar
Martin II R, Mcfarland K, Ellis S, Velanovich V. Irreversible electroporation in locally advanced pancreatic cancer: potential improved overall survival. Ann Surg Oncol 2013; 20(Suppl 3): S443-9. doi: 10.1245/s10434-012-2736-1MartinRIIMcfarlandKEllisSVelanovichV.Irreversible electroporation in locally advanced pancreatic cancer: potential improved overall survival. Ann Surg Oncol2013; 20(Suppl 3): S443-9. doi: 10.1245/s10434-012-2736-1Open DOISearch in Google Scholar
Cannon R, Ellis S, Hayes D, Narayanan G, Martin RCG. Safety and early efficacy of irreversible electroporation for hepatic tumors in proximity to vital structures. J Surg Oncol 2013; 107: 544-9. doi: 10.1002/jso.23280CannonREllisSHayesDNarayananGMartinRCG.Safety and early efficacy of irreversible electroporation for hepatic tumors in proximity to vital structures. J Surg Oncol2013; 107: 544-9. doi: 10.1002/jso.23280Open DOISearch in Google Scholar
Narayanan G, Hosein PJ, Arora G, Barbery KJ, Froud T, Livingstone AS, et al. Percutaneous irreversible electroporation for downstaging and control of unresectable pancreatic adenocarcinoma. J Vasc Interv Radiol 2012; 23: 1613-21. doi: 10.1016/j.jvir.2012.09.012NarayananGHoseinPJAroraGBarberyKJFroudTLivingstoneASPercutaneous irreversible electroporation for downstaging and control of unresectable pancreatic adenocarcinoma. J Vasc Interv Radiol2012; 23: 1613-21. doi: 10.1016/j.jvir.2012.09.012Open DOISearch in Google Scholar
Akinwande O, Ahmad SS, Van Meter T, Schulz B, Martin RCG. CT Findings of patients treated with irreversible electroporation for locally advanced pancreatic cancer. J Oncol 2015; 2015: 680319. doi: 10.1155/2015/680319AkinwandeOAhmadSSVan MeterTSchulzBMartinRCG.CT Findings of patients treated with irreversible electroporation for locally advanced pancreatic cancer. J Oncol2015; 2015: 680319. doi: 10.1155/2015/680319Open DOISearch in Google Scholar
Lee EW, Thai S, Kee ST. Irreversible electroporation: a novel image-guided cancer therapy. Gut Liver 2010; 4(Suppl 1): S99-104. doi: 10.5009/gnl.2010.4.S1.S99LeeEWThaiSKeeST.Irreversible electroporation: a novel image-guided cancer therapy. Gut Liver2010; 4(Suppl 1): S99-104. doi: 10.5009/gnl.2010.4.S1.S99Open DOISearch in Google Scholar
Hofmann F, Ohnimus H, Scheller C, Strupp W, Zimmermann U, Jassoy C. Electric field pulses can induce apoptosis. J Membr Biol 1999; 169: 103-9. doi: 10.1007/s002329900522HofmannFOhnimusHSchellerCStruppWZimmermannUJassoyC.Electric field pulses can induce apoptosis. J Membr Biol1999; 169: 103-9. doi: 10.1007/s002329900522Open DOISearch in Google Scholar
Piñero J, López-Baena M, Ortiz T, Cortés F. Apoptotic and necrotic cell death are both induced by electroporation in HL60 human promyeloid leukaemia cells. Apoptosis 1997; 2: 330-6. doi: 10.1023/A:1026497306006PiñeroJLópez-BaenaMOrtizTCortésF.Apoptotic and necrotic cell death are both induced by electroporation in HL60 human promyeloid leukaemia cells. Apoptosis1997; 2: 330-6. doi: 10.1023/A:1026497306006Open DOISearch in Google Scholar
Lee EW, Chen C, Prieto VE, Dry SM, Loh CT, Kee ST. Advanced hepatic ablation technique for creating complete cell death: Irreversible electroporation. Radiology 2010; 255: 426-33. doi: 10.1148/radiol.10090337LeeEWChenCPrietoVEDrySMLohCTKeeST.Advanced hepatic ablation technique for creating complete cell death: Irreversible electroporation. Radiology2010; 255: 426-33. doi: 10.1148/radiol.10090337Open DOISearch in Google Scholar
Lee EW, Loh CT, Kee ST. Imaging guided percutaneous irreversible electroporation: ultrasound and immunohistological correlation. Technol Cancer Res Treat 2007; 6: 287-93. doi: 10.1177/153303460700600404LeeEWLohCTKeeST.Imaging guided percutaneous irreversible electroporation: ultrasound and immunohistological correlation. Technol Cancer Res Treat2007; 6: 287-93. doi: 10.1177/153303460700600404Open DOISearch in Google Scholar
Mercadal B, Beitel-White N, Aycock KN, Castellví Q, Davalos RV, Ivorra A. Dynamics of cell death after conventional IRE and H-FIRE treatments. Ann Biomed Eng 2020; 48: 1451-62. doi: 10.1007/s10439-020-02462-8MercadalBBeitel-WhiteNAycockKNCastellvíQDavalosRVIvorraA.Dynamics of cell death after conventional IRE and H-FIRE treatments. Ann Biomed Eng2020; 48: 1451-62. doi: 10.1007/s10439-020-02462-8Open DOISearch in Google Scholar
Brock RM, Beitel-White N, Davalos RV, Allen IC. Starting a fire without flame: the induction of cell death and inflammation in electroporationbased tumor ablation strategies. Front Oncol 2020; 10: 1235. doi: 10.3389/fonc.2020.01235BrockRMBeitel-WhiteNDavalosRVAllenIC.Starting a fire without flame: the induction of cell death and inflammation in electroporationbased tumor ablation strategies. Front Oncol2020; 10: 1235. doi: 10.3389/fonc.2020.01235Open DOISearch in Google Scholar
Polajžer T, Miklavčič D. Immunogenic cell death in electroporation-based therapies depends on pulse waveform characteristics. Vaccines 2023; 11: 1036. doi: 10.3390/vaccines11061036PolajžerTMiklavčičD.Immunogenic cell death in electroporation-based therapies depends on pulse waveform characteristics. Vaccines2023; 11: 1036. doi: 10.3390/vaccines11061036Open DOISearch in Google Scholar
Peng W, Polajžer T, Yao C, Miklavčič D. Dynamics of cell death due to electroporation using different pulse parameters as revealed by different viability assays. Ann Biomed Eng 2024; 52: 22-35. doi: 10.1007/s10439-023-03309-8PengWPolajžerTYaoCMiklavčičD.Dynamics of cell death due to electroporation using different pulse parameters as revealed by different viability assays. Ann Biomed Eng2024; 52: 22-35. doi: 10.1007/s10439-023-03309-8Open DOISearch in Google Scholar
de Visser KE, Joyce JA. The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth. Cancer Cell 2023; 41: 374-403. doi: 10.1016/j.ccell.2023.02.016de VisserKEJoyceJA.The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth. Cancer Cell2023; 41: 374-403. doi: 10.1016/j.ccell.2023.02.016Open DOISearch in Google Scholar
Liu M, Bertolazzi G, Sridhar S, Mulder K, Syn N, Hoppe MM, et al. Spatially-resolved transcriptomics reveal macrophage heterogeneity and prognostic significance in diffuse large B-cell lymphoma. Nat Commun 2024; 15: 2113. doi: 10.1038/s41467-024-46220-zLiuMBertolazziGSridharSMulderKSynNHoppeMMSpatially-resolved transcriptomics reveal macrophage heterogeneity and prognostic significance in diffuse large B-cell lymphoma. Nat Commun2024; 15: 2113. doi: 10.1038/s41467-024-46220-zOpen DOISearch in Google Scholar
Ivey JW, Latouche EL, Sano MB, Rossmeisl JH, Davalos R V, Verbridge SS. Targeted cellular ablation based on the morphology of malignant cells. Sci Rep 2015; 5: 17157. doi: 10.1038/srep17157IveyJWLatoucheELSanoMBRossmeislJHDavalos RVVerbridgeSS.Targeted cellular ablation based on the morphology of malignant cells. Sci Rep2015; 5: 17157. doi: 10.1038/srep17157Open DOISearch in Google Scholar
Ivey JW, Wasson EM, Alinezhadbalalami N, Kanitkar A, Debinski W, Sheng Z, et al. Characterization of ablation thresholds for 3D-cultured patient-derived glioma stem cells in response to high-frequency irreversible electroporation. Research 2019; 2019: 8081351. doi: 10.34133/2019/8081315IveyJWWassonEMAlinezhadbalalamiNKanitkarADebinskiWShengZCharacterization of ablation thresholds for 3D-cultured patient-derived glioma stem cells in response to high-frequency irreversible electroporation. Research2019; 2019: 8081351. doi: 10.34133/2019/8081315Open DOISearch in Google Scholar
Rolong A, Schmelz EM, Davalos RV. High-frequency irreversible electroporation targets resilient tumor-initiating cells in ovarian cancer. Integr Biol 2017; 9: 979-87. doi: 10.1039/c7ib00116aRolongASchmelzEMDavalosRV.High-frequency irreversible electroporation targets resilient tumor-initiating cells in ovarian cancer. Integr Biol2017; 9: 979-87. doi: 10.1039/c7ib00116aOpen DOISearch in Google Scholar
Ma Y, Xing Y, Li H, Yuan T, Liang B, Li R, et al. Irreversible electroporation combined with chemotherapy and PD-1/PD-L1 blockade enhanced antitumor immunity for locally advanced pancreatic cancer. Front Immunol 2023; 14: 1193040. doi: 10.3389/fimmu.2023.1193040MaYXingYLiHYuanTLiangBLiRIrreversible electroporation combined with chemotherapy and PD-1/PD-L1 blockade enhanced antitumor immunity for locally advanced pancreatic cancer. Front Immunol2023; 14: 1193040. doi: 10.3389/fimmu.2023.1193040Open DOISearch in Google Scholar
Geboers B, Scheltema MJ, Jung J, Bakker J, Timmer FEF, Cerutti X, et al. Irreversible electroporation of localised prostate cancer downregulates immune suppression and induces systemic anti-tumour T-cell activation – IRE-IMMUNO study. BJU Int 2024. doi:10.1111/bju.16496GeboersBScheltemaMJJungJBakkerJTimmerFEFCeruttiXIrreversible electroporation of localised prostate cancer downregulates immune suppression and induces systemic anti-tumour T-cell activation – IRE-IMMUNO study. BJU Int2024. doi:10.1111/bju.16496Open DOISearch in Google Scholar
He C, Huang X, Zhang Y, Lin X, Li S. T-cell activation and immune memory enhancement induced by irreversible electroporation in pancreatic cancer. Clin Transl Med 2020; 10: E39. doi: 10.1002/ctm2.39HeCHuangXZhangYLinXLiS.T-cell activation and immune memory enhancement induced by irreversible electroporation in pancreatic cancer. Clin Transl Med2020; 10: E39. doi: 10.1002/ctm2.39Open DOISearch in Google Scholar
Zhao J, Wen X, Tian L, Xu C, Wen X, Melancon MP, et al. Irreversible electroporation reverses resistance to immune checkpoint blockade in pancreatic cancer. Nat Commun 2019; 10: 899. doi: 10.1038/s41467-019-08782-1ZhaoJWenXTianLXuCWenXMelanconMPIrreversible electroporation reverses resistance to immune checkpoint blockade in pancreatic cancer. Nat Commun2019; 10: 899. doi: 10.1038/s41467-019-08782-1Open DOISearch in Google Scholar
Markelc B, Čemažar M, Serša G. Effects of reversible and irreversible electroporation on endothelial cells and tissue blood flow. In: Handbook of electroporation. Springer International Publishing; 2017: 607-20. doi: 10.1007/978-3-319-32886-7_70MarkelcBČemažarMSeršaG.Effects of reversible and irreversible electroporation on endothelial cells and tissue blood flow. In: Handbook of electroporation. Springer International Publishing; 2017: 607-20. doi: 10.1007/978-3-319-32886-7_70Open DOISearch in Google Scholar
Monleón E, Lucía Ó, Güemes A, López-Alonso B, Arribas D, Sarnago H, et al. Liver tissue remodeling following ablation with irreversible electroporation in a porcine model. Front Vet Sci 2022; 9: 1014648. doi: 10.3389/fvets.2022.1014648MonleónELucíaÓGüemesALópez-AlonsoBArribasDSarnagoHLiver tissue remodeling following ablation with irreversible electroporation in a porcine model. Front Vet Sci2022; 9: 1014648. doi: 10.3389/fvets.2022.1014648Open DOISearch in Google Scholar
Burbach BJ, O’Flanagan SD, Shao Q, Young KM, Slaughter JR, Rollins MR, et al. Irreversible electroporation augments checkpoint immunotherapy in prostate cancer and promotes tumor antigen-specific tissue-resident memory CD8+ T cells. Nat Commun 2021; 12: 3862. doi: 10.1038/s41467-021-24132-6BurbachBJO’FlanaganSDShaoQYoungKMSlaughterJRRollinsMRIrreversible electroporation augments checkpoint immunotherapy in prostate cancer and promotes tumor antigen-specific tissue-resident memory CD8+ T cells. Nat Commun2021; 12: 3862. doi: 10.1038/s41467-021-24132-6Open DOISearch in Google Scholar
Shao Q, O’Flanagan S, Lam T, Roy P, Pelaez F, Burbach BJ, et al. Engineering T cell response to cancer antigens by choice of focal therapeutic conditions. Int J Hyperthermia 2019; 36: 130-8. doi: 10.1080/02656736.2018.1539253ShaoQO’FlanaganSLamTRoyPPelaezFBurbachBJEngineering T cell response to cancer antigens by choice of focal therapeutic conditions. Int J Hyperthermia2019; 36: 130-8. doi: 10.1080/02656736.2018.1539253Open DOISearch in Google Scholar
He C, Sun S, Zhang Y, Li S. Irreversible electroporation plus anti-pd-1 antibody versus irreversible electroporation alone for patients with locally advanced pancreatic cancer. J Inflamm Res 2021; 14: 4795-807. doi: 10.2147/JIR.S331023HeCSunSZhangYLiS.Irreversible electroporation plus anti-pd-1 antibody versus irreversible electroporation alone for patients with locally advanced pancreatic cancer. J Inflamm Res2021; 14: 4795-807. doi: 10.2147/JIR.S331023Open DOISearch in Google Scholar
Jiang M, Shao Q, Slaughter J, Bischof J. Irreversible electroporation has more synergistic effect with anti-PD-1 immunotherapy than thermal ablation or cryoablation, in a colorectal cancer model. Adv Ther 2024; 7: 2400068. doi:10.1002/adtp.202400068JiangMShaoQSlaughterJBischofJ.Irreversible electroporation has more synergistic effect with anti-PD-1 immunotherapy than thermal ablation or cryoablation, in a colorectal cancer model. Adv Ther2024; 7: 2400068. doi:10.1002/adtp.202400068Open DOISearch in Google Scholar
Yang J, Eresen A, Shangguan J, Ma Q, Yaghmai V, Zhang Z. Irreversible electroporation ablation overcomes tumor-associated immunosuppression to improve the efficacy of DC vaccination in a mice model of pancreatic cancer. Oncoimmunology 2021; 10: 1875638. doi: 10.1080/2162402X.2021.1875638YangJEresenAShangguanJMaQYaghmaiVZhangZ.Irreversible electroporation ablation overcomes tumor-associated immunosuppression to improve the efficacy of DC vaccination in a mice model of pancreatic cancer. Oncoimmunology2021; 10: 1875638. doi: 10.1080/2162402X.2021.1875638Open DOISearch in Google Scholar
Dhatchinamoorthy K, Colbert JD, Rock KL. Cancer immune evasion through loss of MHC class I antigen presentation. Front Immunol 2021; 12: 636568. doi: 10.3389/fimmu.2021.636568DhatchinamoorthyKColbertJDRockKL.Cancer immune evasion through loss of MHC class I antigen presentation. Front Immunol2021; 12: 636568. doi: 10.3389/fimmu.2021.636568Open DOISearch in Google Scholar
Cornel AM, Mimpen IL, Nierkens S. MHC class I downregulation in cancer: underlying mechanisms and potential targets for cancer immunotherapy. Cancers 2020; 12: 1-33. doi: 10.3390/cancers12071760CornelAMMimpenILNierkensS.MHC class I downregulation in cancer: underlying mechanisms and potential targets for cancer immunotherapy. Cancers2020; 12: 1-33. doi: 10.3390/cancers12071760Open DOISearch in Google Scholar
Lin M, Zhang X, Liang S, Luo H, Alnaggar M, Liu A, et al. Irreversible electroporation plus allogenic Vγ9Vδ2 T cells enhances antitumor effect for locally advanced pancreatic cancer patients. Signal Transduct Target Ther 2020; 5: 215. doi: 10.1038/s41392-020-00260-1LinMZhangXLiangSLuoHAlnaggarMLiuAIrreversible electroporation plus allogenic Vγ9Vδ2 T cells enhances antitumor effect for locally advanced pancreatic cancer patients. Signal Transduct Target Ther2020; 5: 215. doi: 10.1038/s41392-020-00260-1Open DOISearch in Google Scholar
Alnaggar M, Lin M, Mesmar A, Liang S, Qaid A, Xu K, et al. Allogenic natural killer cell immunotherapy combined with irreversible electroporation for stage IV hepatocellular carcinoma: Survival outcome. Cell Physiol Biochem 2018; 48: 1882-93. doi: 10.1159/000492509AlnaggarMLinMMesmarALiangSQaidAXuKAllogenic natural killer cell immunotherapy combined with irreversible electroporation for stage IV hepatocellular carcinoma: Survival outcome. Cell Physiol Biochem2018; 48: 1882-93. doi: 10.1159/000492509Open DOISearch in Google Scholar
Eresen A, Yang J, Scotti A, Cai K, Yaghmai V, Zhang Z. Combination of natural killer cell-based immunotherapy and irreversible electroporation for the treatment of hepatocellular carcinoma. Ann Transl Med 2021; 9: 1089. doi: 10.21037/atm-21-539EresenAYangJScottiACaiKYaghmaiVZhangZ.Combination of natural killer cell-based immunotherapy and irreversible electroporation for the treatment of hepatocellular carcinoma. Ann Transl Med2021; 9: 1089. doi: 10.21037/atm-21-539Open DOISearch in Google Scholar
Pan Q, Hu C, Fan Y, Wang Y, Li R, Hu X. Efficacy of irreversible electroporation ablation combined with natural killer cells in treating locally advanced pancreatic cancer. J BUON. 2020; 25: 1643-49. PMID: 32862617.PanQHuCFanYWangYLiRHuX.Efficacy of irreversible electroporation ablation combined with natural killer cells in treating locally advanced pancreatic cancer. J BUON. 2020; 25: 1643-49. PMID: 32862617.Search in Google Scholar
Lin M, Liang S, Wang X, Liang Y, Zhang M, Chen J, et al. Short-term clinical efficacy of percutaneous irreversible electroporation combined with allogeneic natural killer cell for treating metastatic pancreatic cancer. Immunol Lett 2017; 186: 20-27. doi: 10.1016/j.imlet.2017.03.018LinMLiangSWangXLiangYZhangMChenJShort-term clinical efficacy of percutaneous irreversible electroporation combined with allogeneic natural killer cell for treating metastatic pancreatic cancer. Immunol Lett2017; 186: 20-27. doi: 10.1016/j.imlet.2017.03.018Open DOISearch in Google Scholar
Paul S, Lal G. The molecular mechanism of natural killer cells function and its importance in cancer immunotherapy. Front Immunol 2017; 8: 1124. doi: 10.3389/fimmu.2017.01124PaulSLalG.The molecular mechanism of natural killer cells function and its importance in cancer immunotherapy. Front Immunol2017; 8: 1124. doi: 10.3389/fimmu.2017.01124Open DOISearch in Google Scholar
Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA Cancer J Clin 2024; 74: 203. doi: 10.3322/caac.21820SiegelRLGiaquintoANJemalA.Cancer statistics, 2024. CA Cancer J Clin2024; 74: 203. doi: 10.3322/caac.21820Open DOISearch in Google Scholar
Blazevski A, Scheltema MJ, Yuen B, Masand N, Nguyen TV, Delprado W, Shnier R, et al. Oncological and quality-of-life outcomes following focal irreversible electroporation as primary treatment for localised prostate cancer: a biopsy-monitored prospective cohort. Eur Urol Oncol 2020; 3: 283-90. doi: 10.1016/j.euo.2019.04.008BlazevskiAScheltemaMJYuenBMasandNNguyenTVDelpradoWShnierROncological and quality-of-life outcomes following focal irreversible electroporation as primary treatment for localised prostate cancer: a biopsy-monitored prospective cohort. Eur Urol Oncol2020; 3: 283-90. doi: 10.1016/j.euo.2019.04.008Open DOISearch in Google Scholar
Sivaraman A, Barret E. Focal Therapy for prostate cancer: an “à la carte” approach. Eur Urol 2016; 69: 973-5. doi: 10.1016/j.eururo.2015.12.015SivaramanABarretE.Focal Therapy for prostate cancer: an “à la carte” approach. Eur Urol2016; 69: 973-5. doi: 10.1016/j.eururo.2015.12.015Open DOISearch in Google Scholar
Ganzer R, Arthanareeswaran VKA, Ahmed HU, Cestari A, Rischmann P, Salomon G, et al. Which technology to select for primary focal treatment of prostate cancer? European Section of Urotechnology (ESUT) position statement. Prostate Cancer Prostatic Dis 2018; 21: 175-86. doi: 10.1038/s41391-018-0042-0GanzerRArthanareeswaranVKAAhmedHUCestariARischmannPSalomonGWhich technology to select for primary focal treatment of prostate cancer? European Section of Urotechnology (ESUT) position statement. Prostate Cancer Prostatic Dis2018; 21: 175-86. doi: 10.1038/s41391-018-0042-0Open DOISearch in Google Scholar
Guenther E, Klein N, Zapf S, Weil S, Schlosser C, Rubinsky B, et al. Prostate cancer treatment with irreversible electroporation (IRE): safety, efficacy and clinical experience in 471 treatments. PLoS One 2019; 14: e0215093. doi: 10.1371/journal.pone.0215093GuentherEKleinNZapfSWeilSSchlosserCRubinskyBProstate cancer treatment with irreversible electroporation (IRE): safety, efficacy and clinical experience in 471 treatments. PLoS One2019; 14: e0215093. doi: 10.1371/journal.pone.0215093Open DOISearch in Google Scholar
Scheltema MJ, Geboers B, Blazevski A, Doan P, Katelaris A, Agrawal S, et al. Median 5-year outcomes of primary focal irreversible electroporation for localised prostate cancer. BJU Int 2023; 131(Suppl 4): 6-13. doi: 10.1111/bju.15946ScheltemaMJGeboersBBlazevskiADoanPKatelarisAAgrawalSMedian 5-year outcomes of primary focal irreversible electroporation for localised prostate cancer. BJU Int2023; 131(Suppl 4): 6-13. doi: 10.1111/bju.15946Open DOISearch in Google Scholar
Geboers B, Scheltema MJ, Blazevski A, Katelaris A, Doan P, Ali I, et al. Median 4-year outcomes of salvage irreversible electroporation for localized radio-recurrent prostate cancer. BJU Int 2023; 131(Suppl 4): 14-22. doi: 10.1111/bju.15948GeboersBScheltemaMJBlazevskiAKatelarisADoanPAliIMedian 4-year outcomes of salvage irreversible electroporation for localized radio-recurrent prostate cancer. BJU Int2023; 131(Suppl 4): 14-22. doi: 10.1111/bju.15948Open DOISearch in Google Scholar
Scheltema MJ, van den Bos W, Siriwardana AR, Doan P, Katelaris A, Agrawal S, et al. Feasibility and safety of focal irreversible electroporation as salvage treatment for localized radio-recurrent prostate cancer. BJU Int 2017; 120: 51-8. doi: 10.1111/bju.13991ScheltemaMJvan den BosWSiriwardanaARDoanPKatelarisAAgrawalSFeasibility and safety of focal irreversible electroporation as salvage treatment for localized radio-recurrent prostate cancer. BJU Int2017; 120: 51-8. doi: 10.1111/bju.13991Open DOISearch in Google Scholar
Yaxley WJ, Gianduzzo T, Kua B, Oxford R, Yaxley JW. Focal therapy for prostate cancer with irreversible electroporation: oncological and functional results of a single institution study. Investig Clin Urol 2022; 63: 285-93. doi: 10.4111/icu.20210472YaxleyWJGianduzzoTKuaBOxfordRYaxleyJW.Focal therapy for prostate cancer with irreversible electroporation: oncological and functional results of a single institution study. Investig Clin Urol2022; 63: 285-93. doi: 10.4111/icu.20210472Open DOISearch in Google Scholar
Park W, Chawla A, O’Reilly EM. Pancreatic cancer: a review. JAMA 2021; 326: 851-62. doi: 10.1001/jama.2021.13027ParkWChawlaAO’ReillyEM.Pancreatic cancer: a review. JAMA2021; 326: 851-62. doi: 10.1001/jama.2021.13027Open DOISearch in Google Scholar
Wang ZQ, Zhang F, Deng T, Zhang L, Feng F, Wang FH, et al. The efficacy and safety of modified FOLFIRINOX as first-line chemotherapy for Chinese patients with metastatic pancreatic cancer. Cancer Commun 2019; 39: 26. doi: 10.1186/s40880-019-0367-7WangZQZhangFDengTZhangLFengFWangFHThe efficacy and safety of modified FOLFIRINOX as first-line chemotherapy for Chinese patients with metastatic pancreatic cancer. Cancer Commun2019; 39: 26. doi: 10.1186/s40880-019-0367-7Open DOISearch in Google Scholar
Martin RCG, McFarland K, Ellis S, Velanovich V. Irreversible electroporation therapy in the management of locally advanced pancreatic adenocarcinoma. J Am Coll Surg 2012; 215: 361-9. doi: 10.1016/j.jamcollsurg.2012.05.021MartinRCGMcFarlandKEllisSVelanovichV.Irreversible electroporation therapy in the management of locally advanced pancreatic adenocarcinoma. J Am Coll Surg2012; 215: 361-9. doi: 10.1016/j.jamcollsurg.2012.05.021Open DOISearch in Google Scholar
Martin RCG, Kwon D, Chalikonda S, Sellers M, Kotz E, Scoggins C, et al. Treatment of 200 locally advanced (Stage III) pancreatic adenocarcinoma patients with irreversible electroporation safety and efficacy. Anna Surg 2015; 262: 486-94. doi: 10.1097/SLA.0000000000001441MartinRCGKwonDChalikondaSSellersMKotzEScogginsCTreatment of 200 locally advanced (Stage III) pancreatic adenocarcinoma patients with irreversible electroporation safety and efficacy. Anna Surg2015; 262: 486-94. doi: 10.1097/SLA.0000000000001441Open DOISearch in Google Scholar
Liu S, Qin Z, Xu J, Zeng J, Chen J, Niu L, et al. Irreversible electroporation combined with chemotherapy for unresectable pancreatic carcinoma: a prospective cohort study. Onco Targets Ther 2019; 12: 1341-50. doi: 10.2147/OTT.S186721LiuSQinZXuJZengJChenJNiuLIrreversible electroporation combined with chemotherapy for unresectable pancreatic carcinoma: a prospective cohort study. Onco Targets Ther2019; 12: 1341-50. doi: 10.2147/OTT.S186721Open DOISearch in Google Scholar
Timmer FEF, Geboers B, Ruarus AH, Vroomen LGPH, Schouten EAC, van der Lei S, et al. MRI-guided stereotactic ablative body radiotherapy versus CT-guided percutaneous irreversible electroporation for locally advanced pancreatic cancer (CROSSFIRE): a single-centre, open-label, randomised phase 2 trial. Lancet Gastroenterol Hepatol 2024; 9: 448-59. doi: 10.1016/S2468-1253(24)00017-7TimmerFEFGeboersBRuarusAHVroomenLGPHSchoutenEACvan der LeiSMRI-guided stereotactic ablative body radiotherapy versus CT-guided percutaneous irreversible electroporation for locally advanced pancreatic cancer (CROSSFIRE): a single-centre, open-label, randomised phase 2 trial. Lancet Gastroenterol Hepatol2024; 9: 448-59. doi: 10.1016/S2468-1253(24)00017-7Open DOISearch in Google Scholar
He C, Huang X, Zhang Y, Cai Z, Lin X, Li S. Comparison of survival between irreversible electroporation followed by chemotherapy and chemotherapy alone for locally advanced pancreatic cancer. Front Oncol 2020; 10: 6. doi: 10.3389/fonc.2020.00006HeCHuangXZhangYCaiZLinXLiS.Comparison of survival between irreversible electroporation followed by chemotherapy and chemotherapy alone for locally advanced pancreatic cancer. Front Oncol2020; 10: 6. doi: 10.3389/fonc.2020.00006Open DOISearch in Google Scholar
Oh JH, Jun DW. The latest global burden of liver cancer: a past and present threat. Clin Mol Hepatol 2023; 29: 355-7. doi: 10.3350/cmh.2023.0070OhJHJunDW.The latest global burden of liver cancer: a past and present threat. Clin Mol Hepatol2023; 29: 355-7. doi: 10.3350/cmh.2023.0070Open DOISearch in Google Scholar
Martin J, Petrillo A, Smyth EC, Shaida N, Khwaja S, Cheow HK, et al. Colorectal liver metastases: current management and future perspectives. World J Clin Oncol 2020; 11: 761-808. doi: 10.5306/wjco.v11.i10.761MartinJPetrilloASmythECShaidaNKhwajaSCheowHKColorectal liver metastases: current management and future perspectives. World J Clin Oncol2020; 11: 761-808. doi: 10.5306/wjco.v11.i10.761Open DOISearch in Google Scholar
Niessen C, Thumann S, Beyer L, Pregler B, Kramer J, Lang S, et al. Percutaneous irreversible electroporation: long-term survival analysis of 71 patients with inoperable malignant hepatic tumors. Sci Rep 2017; 7: 43687. doi: 10.1038/srep43687NiessenCThumannSBeyerLPreglerBKramerJLangSPercutaneous irreversible electroporation: long-term survival analysis of 71 patients with inoperable malignant hepatic tumors. Sci Rep2017; 7: 43687. doi: 10.1038/srep43687Open DOISearch in Google Scholar
Ma Y, Chen Z, Liang B, Li R, Li J, Li Z, et al. Irreversible electroporation for hepatocellular carcinoma abutting the diaphragm: a prospective single-center study. J Clin Transl Hepatol 2022; 10: 190-6. doi: 10.14218/JCTH.2021.00019MaYChenZLiangBLiRLiJLiZIrreversible electroporation for hepatocellular carcinoma abutting the diaphragm: a prospective single-center study. J Clin Transl Hepatol2022; 10: 190-6. doi: 10.14218/JCTH.2021.00019Open DOISearch in Google Scholar
Scheffer HJ, Nielsen K, van Tilborg AAJM, Vieveen JM, Bouwman RA, Kazemier G, et al. Ablation of colorectal liver metastases by irreversible electroporation: results of the COLDFIRE-I ablate-and-resect study. Eur Radiol 2014; 24: 2467-75. doi: 10.1007/s00330-014-3259-xSchefferHJNielsenKvan TilborgAAJMVieveenJMBouwmanRAKazemierGAblation of colorectal liver metastases by irreversible electroporation: results of the COLDFIRE-I ablate-and-resect study. Eur Radiol2014; 24: 2467-75. doi: 10.1007/s00330-014-3259-xOpen DOISearch in Google Scholar
Frühling P, Stillström D, Holmquist F, Nilsson A, Freedman J. Irreversible electroporation of hepatocellular carcinoma and colorectal cancer liver metastases: a nationwide multicenter study with short- and long-term follow-up. EJSO 2023; 49: 107046. doi: 10.1016/j.ejso.2023.107046FrühlingPStillströmDHolmquistFNilssonAFreedmanJ.Irreversible electroporation of hepatocellular carcinoma and colorectal cancer liver metastases: a nationwide multicenter study with short- and long-term follow-up. EJSO2023; 49: 107046. doi: 10.1016/j.ejso.2023.107046Open DOISearch in Google Scholar
Frühling P, Stillström D, Holmquist F, Nilsson A, Freedman J. Change in tissue resistance after irreversible electroporation in liver tumors as an indicator of treatment success - a multi-center analysis with long term follow-up. EJSO 2024; 50: 108508. doi: 10.1016/j.ejso.2024.108508FrühlingPStillströmDHolmquistFNilssonAFreedmanJ.Change in tissue resistance after irreversible electroporation in liver tumors as an indicator of treatment success - a multi-center analysis with long term follow-up. EJSO2024; 50: 108508. doi: 10.1016/j.ejso.2024.108508Open DOISearch in Google Scholar
Narayanan G, Gentile NT, Eyshi J, Schiro BJ, Gandhi RT, Peña CS, et al. Irreversible electroporation in treating colorectal liver metastases in proximity to critical structures. J Vasc Interv Radiol 2024; 35: 1806-13. doi: 10.1016/j.jvir.2024.08.021NarayananGGentileNTEyshiJSchiroBJGandhiRTPeñaCSIrreversible electroporation in treating colorectal liver metastases in proximity to critical structures. J Vasc Interv Radiol2024; 35: 1806-13. doi: 10.1016/j.jvir.2024.08.021Open DOISearch in Google Scholar
Zhang X, Zhang X, Ding X, Wang Z, Fan Y, Chen G, et al. Novel irreversible electroporation ablation (Nano-knife) versus radiofrequency ablation for the treatment of solid liver tumors: a comparative, randomized, multicenter clinical study. Front Oncol 2022; 12: 945123. doi: 10.3389/fonc.2022.945123ZhangXZhangXDingXWangZFanYChenGNovel irreversible electroporation ablation (Nano-knife) versus radiofrequency ablation for the treatment of solid liver tumors: a comparative, randomized, multicenter clinical study. Front Oncol2022; 12: 945123. doi: 10.3389/fonc.2022.945123Open DOISearch in Google Scholar
Wada T, Sugimoto K, Sakamaki K, Takahashi H, Kakegawa T, Tomita Y, et al. Comparisons of radiofrequency ablation, microwave ablation, and irreversible electroporation by using propensity score analysis for early stage hepatocellular carcinoma. Cancers 2023; 15: 732. doi: 10.3390/cancers15030732WadaTSugimotoKSakamakiKTakahashiHKakegawaTTomitaYComparisons of radiofrequency ablation, microwave ablation, and irreversible electroporation by using propensity score analysis for early stage hepatocellular carcinoma. Cancers2023; 15: 732. doi: 10.3390/cancers15030732Open DOISearch in Google Scholar
Schlageter M, Terracciano LM, D’Angelo S, Sorrentino P. Histopathology of hepatocellular carcinoma. World J Gastroenterol 2014; 20: 15955-64. doi: 10.3748/wjg.v20.i43.15955SchlageterMTerraccianoLMD’AngeloSSorrentinoP.Histopathology of hepatocellular carcinoma. World J Gastroenterol2014; 20: 15955-64. doi: 10.3748/wjg.v20.i43.15955Open DOISearch in Google Scholar
Bhutiani N, Philips P, Scoggins CR, McMasters KM, Potts MH, Martin RCG. Evaluation of tolerability and efficacy of irreversible electroporation (IRE) in treatment of Child-Pugh B (7/8) hepatocellular carcinoma (HCC). HPB 2016; 18: 593-9. doi: 10.1016/j.hpb.2016.03.609BhutianiNPhilipsPScogginsCRMcMastersKMPottsMHMartinRCG.Evaluation of tolerability and efficacy of irreversible electroporation (IRE) in treatment of Child-Pugh B (7/8) hepatocellular carcinoma (HCC). HPB2016; 18: 593-9. doi: 10.1016/j.hpb.2016.03.609Open DOISearch in Google Scholar
Dai JC, Morgan TN, Steinberg RL, Johnson BA, Garbens A, Cadeddu JA. Irreversible lectroporation for the treatment of small renal masses: 5-year outcomes. J Endourol 2021; 35: 1586-92. doi: 10.1089/end.2021.0115DaiJCMorganTNSteinbergRLJohnsonBAGarbensACadedduJA.Irreversible lectroporation for the treatment of small renal masses: 5-year outcomes. J Endourol2021; 35: 1586-92. doi: 10.1089/end.2021.0115Open DOISearch in Google Scholar
Kodama H, Vroomen LG, Ueshima E, Reilly J, Brandt W, Paluch LR, et al. Catheter-based endobronchial electroporation is feasible for the focal treatment of peribronchial tumors. J Thorac Cardiovasc Surg 2018; 155: 2150-9.e3. doi: 10.1016/j.jtcvs.2017.11.097KodamaHVroomenLGUeshimaEReillyJBrandtWPaluchLRCatheter-based endobronchial electroporation is feasible for the focal treatment of peribronchial tumors. J Thorac Cardiovasc Surg2018; 155: 2150-9.e3. doi: 10.1016/j.jtcvs.2017.11.097Open DOISearch in Google Scholar
Reddy VY, Gerstenfeld EP, Natale A, Whang W, Cuoco FA, Patel C, et al. Pulsed field or conventional thermal ablation for paroxysmal atrial fibrillation. N Engl J Med 2023; 389: 1660-71. doi: 10.1056/nejmoa2307291ReddyVYGerstenfeldEPNataleAWhangWCuocoFAPatelCPulsed field or conventional thermal ablation for paroxysmal atrial fibrillation. N Engl J Med2023; 389: 1660-71. doi: 10.1056/nejmoa2307291Open DOISearch in Google Scholar
Reddy VY, Mansour M, Calkins H, d’Avila A, Chinitz L, Woods C, et al. Pulsed field vs conventional thermal ablation for paroxysmal atrial fibrillation: recurrent atrial arrhythmia burden. J Am Coll Cardiol 2024; 84: 61-74. doi: 10.1016/j.jacc.2024.05.001ReddyVYMansourMCalkinsHd’AvilaAChinitzLWoodsCPulsed field vs conventional thermal ablation for paroxysmal atrial fibrillation: recurrent atrial arrhythmia burden. J Am Coll Cardiol2024; 84: 61-74. doi: 10.1016/j.jacc.2024.05.001Open DOISearch in Google Scholar
Neven K, Van Es R, Van Driel V, van Wessel H, Fidder H, Vink A, et al. Acute and long-term effects of full-power electroporation ablation directly on the porcine esophagus. Circ Arrhythm Electrophysiol 2017; 10: d e004672. doi: 10.1161/CIRCEP.116.004672NevenKVan EsRVan DrielVvan WesselHFidderHVinkAAcute and long-term effects of full-power electroporation ablation directly on the porcine esophagus. Circ Arrhythm Electrophysiol2017; 10: d e004672. doi: 10.1161/CIRCEP.116.004672Open DOISearch in Google Scholar
Reddy VY, Dukkipati SR, Neuzil P, Anic A, Petru J, Funasako M, et al. Pulsed field ablation of paroxysmal atrial fibrillation: 1-year outcomes of IMPULSE, PEFCAT, and PEFCAT II. JACC Clin Electrophysiol 2021; 7: 614-27. doi: 10.1016/j.jacep.2021.02.014ReddyVYDukkipatiSRNeuzilPAnicAPetruJFunasakoMPulsed field ablation of paroxysmal atrial fibrillation: 1-year outcomes of IMPULSE, PEFCAT, and PEFCAT II. JACC Clin Electrophysiol2021; 7: 614-27. doi: 10.1016/j.jacep.2021.02.014Open DOISearch in Google Scholar
Ekanem E, Neuzil P, Reichlin T, Kautzner J, van der Voort P, Jais P, et al. Safety of pulsed field ablation in more than 17,000 patients with atrial fibrillation in the MANIFEST-17K study. Nat Med 2024; 30: 2020-9. doi: 10.1038/s41591-024-03114-3EkanemENeuzilPReichlinTKautznerJvan der VoortPJaisPSafety of pulsed field ablation in more than 17,000 patients with atrial fibrillation in the MANIFEST-17K study. Nat Med2024; 30: 2020-9. doi: 10.1038/s41591-024-03114-3Open DOISearch in Google Scholar
Anter E, Mansour M, Nair DG, Sharma D, Taigen TL, Neuzil P, et al. Dual-energy lattice-tip ablation system for persistent atrial fibrillation: a randomized trial. Nat Med 2024; 30: 2303-10. doi: 10.1038/s41591-024-03022-6AnterEMansourMNairDGSharmaDTaigenTLNeuzilPDual-energy lattice-tip ablation system for persistent atrial fibrillation: a randomized trial. Nat Med2024; 30: 2303-10. doi: 10.1038/s41591-024-03022-6Open DOISearch in Google Scholar
Duytschaever M, De Potter T, Grimaldi M, Anic A, Vijgen J, Neuzil P, et al. Paroxysmal atrial fibrillation ablation using a novel variable-loop biphasic pulsed field ablation catheter integrated with a 3-dimensional mapping system: 1-year outcomes of the multicenter inspIRE study. Circ Arrhythm Electrophysiol 2023; 16: E011780. doi: 10.1161/CIRCEP.122.011780DuytschaeverMDe PotterTGrimaldiMAnicAVijgenJNeuzilPParoxysmal atrial fibrillation ablation using a novel variable-loop biphasic pulsed field ablation catheter integrated with a 3-dimensional mapping system: 1-year outcomes of the multicenter inspIRE study. Circ Arrhythm Electrophysiol2023; 16: E011780. doi: 10.1161/CIRCEP.122.011780Open DOISearch in Google Scholar
Reddy VY, Calkins H, Mansour M, Wazni O, Di Biase L, Bahu M, et al. Pulsed field ablation to treat paroxysmal atrial fibrillation: safety and effectiveness in the ADMIRE pivotal trial. Circulation 2024; 150: 1174-86. doi: 10.1161/CIRCULATIONAHA.124.070333ReddyVYCalkinsHMansourMWazniODi BiaseLBahuMPulsed field ablation to treat paroxysmal atrial fibrillation: safety and effectiveness in the ADMIRE pivotal trial. Circulation2024; 150: 1174-86. doi: 10.1161/CIRCULATIONAHA.124.070333Open DOISearch in Google Scholar
van Zyl M, Ladas TP, Tri JA, Yasin OZ, Ladejobi AO, Tan NY, et al. Bipolar electroporation across the interventricular septum: electrophysiological, imaging, and histopathological characteristics. JACC Clin Electrophysiol 2022; 8: 1106-18. doi: 10.1016/j.jacep.2022.06.002van ZylMLadasTPTriJAYasinOZLadejobiAOTanNYBipolar electroporation across the interventricular septum: electrophysiological, imaging, and histopathological characteristics. JACC Clin Electrophysiol2022; 8: 1106-18. doi: 10.1016/j.jacep.2022.06.002Open DOISearch in Google Scholar
Koruth JS, Kuroki K, Iwasawa J, Viswanathan R, Brose R, Buck ED, et al. Endocardial ventricular pulsed field ablation: a proof-of-concept preclinical evaluation. Europace 2020; 22: 434-9. doi: 10.1093/europace/euz341KoruthJSKurokiKIwasawaJViswanathanRBroseRBuckEDEndocardial ventricular pulsed field ablation: a proof-of-concept preclinical evaluation. Europace2020; 22: 434-9. doi: 10.1093/europace/euz341Open DOISearch in Google Scholar
Younis A, Buck E, Santangeli P, Tabaja C, Garrott K, Lehn L, et al. Efficacy of pulsed field vs radiofrequency for the reablation of chronic radiofrequency ablation substrate. JACC Clin Electrophysiol 2024; 10: 222-34. doi: 10.1016/j.jacep.2023.09.015YounisABuckESantangeliPTabajaCGarrottKLehnLEfficacy of pulsed field vs radiofrequency for the reablation of chronic radiofrequency ablation substrate. JACC Clin Electrophysiol2024; 10: 222-34. doi: 10.1016/j.jacep.2023.09.015Open DOISearch in Google Scholar
Im S Il, Higuchi S, Lee A, Morrow B, Schenider K, Speltz M, et al. Pulsed field ablation of left ventricular myocardium in a swine infarct model. JACC Clin Electrophysiol 2022; 8: 722-31. doi: 10.1016/j.jacep.2022.03.007ImSIIHiguchiSLeeAMorrowBScheniderKSpeltzMPulsed field ablation of left ventricular myocardium in a swine infarct model. JACC Clin Electrophysiol2022; 8: 722-31. doi: 10.1016/j.jacep.2022.03.007Open DOISearch in Google Scholar
Sandhu U, Alkukhun L, Kheiri B, Hodovan J, Chiang K, Splanger T, et al. In vivo pulsed-field ablation in healthy vs. chronically infarcted ventricular myocardium: biophysical and histologic characterization. Europace 2023; 25: 1503-9. doi: 10.1093/europace/euac252SandhuUAlkukhunLKheiriBHodovanJChiangKSplangerTIn vivo pulsed-field ablation in healthy vs. chronically infarcted ventricular myocardium: biophysical and histologic characterization. Europace2023; 25: 1503-9. doi: 10.1093/europace/euac252Open DOISearch in Google Scholar
Peichl P, Bulava A, Wichterle D, Schlosser F, Stojadinović P, Borišincová E, et al. Efficacy and safety of focal pulsed-field ablation for ventricular arrhythmias: two-centre experience. Europace 2024; 26: euae192. doi: 10.1093/europace/euae192PeichlPBulavaAWichterleDSchlosserFStojadinovićPBorišincováEEfficacy and safety of focal pulsed-field ablation for ventricular arrhythmias: two-centre experience. Europace2024; 26: euae192. doi: 10.1093/europace/euae192Open DOISearch in Google Scholar
Garcia PA, Pancotto T, Rossmeisl JH, Henao-Guerrero N, Gustafson NR, Daniel GB, et al. Non-thermal irreversible electroporation (N-TIRE) and adjuvant fractionated radiotherapeutic multimodal therapy for intracranial malignant glioma in a canine patient. Technol Cancer Res Treat 2011; 10: 73-83. doi: 10.7785/tcrt.2012.500181GarciaPAPancottoTRossmeislJHHenao-GuerreroNGustafsonNRDanielGBNon-thermal irreversible electroporation (N-TIRE) and adjuvant fractionated radiotherapeutic multimodal therapy for intracranial malignant glioma in a canine patient. Technol Cancer Res Treat2011; 10: 73-83. doi: 10.7785/tcrt.2012.500181Open DOISearch in Google Scholar
Suraju MO, Su Y, Chang J, Katwala A, Nayyar A, et al. Impact of irreversible electroporation on survival among patients with borderline resectable/locally advanced pancreatic cancer: A single center experience. Surgical Oncology Insight 2024; 1: 100075. doi: 10.1016/j.soi.2024.100075.SurajuMOSuYChangJKatwalaANayyarAImpact of irreversible electroporation on survival among patients with borderline resectable/locally advanced pancreatic cancer: A single center experience. Surgical Oncology Insight2024; 1: 100075. doi: 10.1016/j.soi.2024.100075.Open DOISearch in Google Scholar
Meijerink MR, Ruarus AH, Vroomen LG, Puijk RS, Geboers B, et al. Irreversible electroporation to treat unresectable colorectal liver metastases (COLDFIRE-2): A phase II, two-center, single-arm clinical trial. Radiology 2021; 299: 470 - 480. doi: 10.1148/RADIOL.2021203089.MeijerinkMRRuarusAHVroomenLGPuijkRSGeboersBIrreversible electroporation to treat unresectable colorectal liver metastases (COLDFIRE-2): A phase II, two-center, single-arm clinical trial. Radiology2021; 299: 470-480. doi: 10.1148/RADIOL.2021203089.Open DOISearch in Google Scholar
Esparza S, Jacobs E, Hammel J, Michelhaugh SK, Alinezhadbalamani, Nagai-Singer M, et al. Transient Lymphatic Remodeling Follows Sub-Ablative High-Frequency Irreversible Electroporation Therapy in a 4T1 Murine Model. Annals of Biomedical Engineering 2025; 3674. doi.org/10.1007/s10439-024-03674-y.EsparzaSJacobsEHammelJMichelhaughSKAlinezhadbalamaniNagai-SingerMTransient Lymphatic Remodeling Follows Sub-Ablative High-Frequency Irreversible Electroporation Therapy in a 4T1 Murine Model. Annals of Biomedical Engineering2025; 3674. doi.org/10.1007/s10439-024-03674-y.Open DOISearch in Google Scholar