Association of OPRM1, MIR23B, and MIR107 genetic variability with acute pain, chronic pain and adverse effects after postoperative tramadol and paracetamol treatment in breast cancer
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Subedi M, Bajaj S, Kumar MS, Yc M. An overview of tramadol and its usage in pain management and future perspective. Biomed Pharmacother 2019; 111: 443-51. doi: 10.1016/j.biopha.2018.12.085SubediMBajajSKumarMSYcMAn overview of tramadol and its usage in pain management and future perspective.Biomed Pharmacother201911144351doi10.1016/j.biopha.2018.12.085Open DOISearch in Google Scholar
Besic N, Smrekar J, Strazisar B. Chronic adverse effects after an axillary lymphadenectomy in breast cancer patients after administering weaker and stronger postoperative analgesia: results of a prospective double-blind randomized study. Breast Cancer Res Treat 2020; 182: 655-63. doi: 10.1007/s10549-020-05713-3BesicNSmrekarJStrazisarBChronic adverse effects after an axillary lymphadenectomy in breast cancer patients after administering weaker and stronger postoperative analgesia: results of a prospective double-blind randomized study.Breast Cancer Res Treat202018265563doi10.1007/s10549-020-05713-3Open DOISearch in Google Scholar
World Health Organisation. Tramadol, update review report. [Internet]. 2014. p. 1-39. [cited 2022 Aug 14]. Available at: http://www.who.int/medicines/areas/quality_safety/6_1_Update.pdfWorld Health OrganisationTramadol, update review report.[Internet]2014p139[cited 2022 Aug 14]. Available at:http://www.who.int/medicines/areas/quality_safety/6_1_Update.pdfSearch in Google Scholar
Crist RC, Berrettini WH. Pharmacogenetics of OPRM1. Pharmacol Biochem Behav 2014; 123: 25-33. doi: 10.1016/j.pbb.2013.10.018CristRCBerrettiniWHPharmacogenetics of OPRM1.Pharmacol Biochem Behav20141232533doi10.1016/j.pbb.2013.10.018Open DOISearch in Google Scholar
Wang S. Historical review: opiate addiction and opioid receptors. Cell Transplant 2019; 28: 233-8. doi: 10.1177/0963689718811060WangSHistorical review: opiate addiction and opioid receptors.Cell Transplant2019282338doi10.1177/0963689718811060Open DOISearch in Google Scholar
Yoshida K, Nishizawa D, Ide S, Ichinohe T, Fukuda KI, Ikeda K. A pharmacogenetics approach to pain management. Neuropsychopharmacol Rep 2018; 38: 2-8. doi: 10.1002/npr2.12003YoshidaKNishizawaDIdeSIchinoheTFukudaKIIkedaKA pharmacogenetics approach to pain management.Neuropsychopharmacol Rep20183828doi10.1002/npr2.12003Open DOISearch in Google Scholar
Muriel J, Margarit C, Barrachina J, Ballester P, Flor A, Morales D, et al. Pharmacogenetics and prediction of adverse events in prescription opioid use disorder patients. Basic Clin Pharmacol Toxicol 2019; 124: 439-48. doi: 10.1111/bcpt.13155MurielJMargaritCBarrachinaJBallesterPFlorAMoralesDet alPharmacogenetics and prediction of adverse events in prescription opioid use disorder patients.Basic Clin Pharmacol Toxicol201912443948doi10.1111/bcpt.13155Open DOISearch in Google Scholar
Liu YC, Wang WS. Human mu-opioid receptor gene A118G polymorphism predicts the efficacy of tramadol/acetaminophen combination tablets (ultracet) in oxaliplatin-induced painful neuropathy. Cancer 2012; 118: 1718-25. doi: 10.1002/cncr.26430LiuYCWangWSHuman mu-opioid receptor gene A118G polymorphism predicts the efficacy of tramadol/acetaminophen combination tablets (ultracet) in oxaliplatin-induced painful neuropathy.Cancer2012118171825doi10.1002/cncr.26430Open DOISearch in Google Scholar
Campa D, Gioia A, Tomei A, Poli P, Barale R. Association of ABCB1/MDR1 and OPRM1 gene polymorphisms with morphine pain relief. Clin Pharmacol Ther 2008; 83: 559-66. doi: 10.1038/sj.clpt.6100385CampaDGioiaATomeiAPoliPBaraleRAssociation of ABCB1/MDR1 and OPRM1 gene polymorphisms with morphine pain relief.Clin Pharmacol Ther20088355966doi10.1038/sj.clpt.6100385Open DOISearch in Google Scholar
Lötsch J, von Hentig N, Freynhagen R, Griessinger N, Zimmermann M, Doehring A, et al. Cross-sectional analysis of the influence of currently known pharmacogenetic modulators on opioid therapy in outpatient pain centers. Pharmacogenet Genomics 2009; 19: 429-36. doi: 10.1097/fpc.0b013e32832b89daLötschJvon HentigNFreynhagenRGriessingerNZimmermannMDoehringAet alCross-sectional analysis of the influence of currently known pharmacogenetic modulators on opioid therapy in outpatient pain centers.Pharmacogenet Genomics20091942936doi10.1097/fpc.0b013e32832b89daOpen DOISearch in Google Scholar
Klepstad P, Rakvåg TT, Kaasa S, Holthe M, Dale O, Borchgrevink PC, et al. The 118 A > G polymorphism in the human mu-opioid receptor gene may increase morphine requirements in patients with pain caused by malignant disease. Acta Anaesthesiol Scand 2004; 48: 1232-9. doi: 10.1111/j.1399-6576.2004.00517.xKlepstadPRakvågTTKaasaSHoltheMDaleOBorchgrevinkPCet alThe 118 A > G polymorphism in the human mu-opioid receptor gene may increase morphine requirements in patients with pain caused by malignant disease.Acta Anaesthesiol Scand20044812329doi10.1111/j.1399-6576.2004.00517.xOpen DOISearch in Google Scholar
De Gregori M, Diatchenko L, Ingelmo PM, Napolioni V, Klepstad P, Belfer I, et al. Human genetic variability contributes to postoperative morphine consumption. J Pain 2016; 17: 628-36. doi: 10.1016/j.jpain.2016.02.003De GregoriMDiatchenkoLIngelmoPMNapolioniVKlepstadPBelferIet alHuman genetic variability contributes to postoperative morphine consumption.J Pain20161762836doi10.1016/j.jpain.2016.02.003Open DOISearch in Google Scholar
Riffo-Campos ÁL, Riquelme I, Brebi-Mieville P. Tools for sequence-based miRNA target prediction: what to choose? Int J Mol Sci 2016; 17: 1987. doi: 10.3390/ijms17121987Riffo-CamposÁLRiquelmeIBrebi-MievillePTools for sequence-based miRNA target prediction: what to choose?Int J Mol Sci2016171987doi10.3390/ijms17121987Open DOISearch in Google Scholar
Xu W, San Lucas A, Wang Z, Liu Y. Identifying microRNA targets in different gene regions. BMC Bioinformatics 2014; 15: S4. doi: 10.1186/1471-2105-15-S7-S4XuWSan LucasAWangZLiuYIdentifying microRNA targets in different gene regionsBMC Bioinformatics201415S4doi10.1186/1471-2105-15-S7-S4Open DOISearch in Google Scholar
Lu Z, Xu J, Xu M, Pasternak GW, Pan YX. Morphine regulates expression of μ-opioid receptor MOR-1A, an intron-retention carboxyl terminal splice variant of the μ-opioid receptor (OPRM1) gene via miR-103/miR-107. Mol Pharmacol 2014; 85: 368-80. doi: 10.1124/mol.113.089292LuZXuJXuMPasternakGWPanYXMorphine regulates expression of μ-opioid receptor MOR-1A, an intron-retention carboxyl terminal splice variant of the μ-opioid receptor (OPRM1) gene via miR-103/miR-107.Mol Pharmacol20148536880doi10.1124/mol.113.089292Open DOISearch in Google Scholar
Zheng H, Law PY, Loh HH. Non-coding RNAs regulating morphine function: with emphasis on the in vivo and in vitro functions of miR-190. Front Genet 2012; 3: 113. doi: 10.3389/fgene.2012.00113ZhengHLawPYLohHHNon-coding RNAs regulating morphine function: with emphasis on the in vivo and in vitro functions of miR-190.Front Genet20123113doi10.3389/fgene.2012.00113Open DOISearch in Google Scholar
Wu Q, Law PY, Wei LN, Loh HH. Post-transcriptional regulation of mouse mu opioid receptor (MOR1) via its 3’ untranslated region: a role for micro-RNA23b. FASEB J 2008; 22: 4085-95. doi: 10.1096/fj.08-108175WuQLawPYWeiLNLohHHPost-transcriptional regulation of mouse mu opioid receptor (MOR1) via its 3’ untranslated region: a role for micro-RNA23b.FASEB J200822408595doi10.1096/fj.08-108175Open DOISearch in Google Scholar
Rodríguez RE. Morphine and microRNA activity: is there a relation with addiction? Front Genet 2012; 3: 223. doi: 10.3389/fgene.2012.00223RodríguezRE.Morphine and microRNA activity: is there a relation with addiction?Front Genet20123223doi10.3389/fgene.2012.00223Open DOISearch in Google Scholar
Besic N, Smrekar J, Strazisar B. Acute pain and side effects after tramadol in breast cancer patients: results of a prospective double-blind randomized study. Sci Rep 2020; 10: 18766. doi: 10.1038/s41598-020-75961-2BesicNSmrekarJStrazisarBAcute pain and side effects after tramadol in breast cancer patients: results of a prospective double-blind randomized study.Sci Rep20201018766doi10.1038/s41598-020-75961-2Open DOISearch in Google Scholar
Fitz-Henry J. The ASA classification and peri-operative risk. Ann R Coll Surg Engl 2011; 93: 185-7. doi: 10.1308/rcsann.2011.93.3.185aFitz-HenryJ.The ASA classification and peri-operative risk.Ann R Coll Surg Engl2011931857doi10.1308/rcsann.2011.93.3.185aOpen DOISearch in Google Scholar
Cariaso M, Lennon G. SNPedia: a wiki supporting personal genome annotation, interpretation and analysis. Nucleic Acids Res 2012; 40: D1308-12. doi: 10.1093/nar/gkr798CariasoMLennonGSNPedia: a wiki supporting personal genome annotation, interpretation and analysis.Nucleic Acids Res201240D130812doi10.1093/nar/gkr798Open DOISearch in Google Scholar
Machiela MJ, Chanock SJ. LDlink: a web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics 2015; 31: 3555-7. doi: 10.1093/bioinformatics/btv402MachielaMJChanockSJLDlink: a web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants.Bioinformatics20153135557doi10.1093/bioinformatics/btv402Open DOISearch in Google Scholar
Huang H-Y, Lin Y-C-D, Li J, Huang K-Y, Shrestha S, Hong H-C, et al. miRTarBase 2020: updates to the experimentally validated microRNA–target interaction database. Nucleic Acids Research 2020; 48: D148-54. doi: 10.1093/nar/gkz896HuangH-YLinY-C-DLiJHuangK-YShresthaSHongH-Cet almiRTarBase 2020: updates to the experimentally validated microRNA–target interaction databaseNucleic Acids Research202048D14854doi10.1093/nar/gkz896Open DOISearch in Google Scholar
Chen Y, Wang X. miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Research 2020; 48: D127-31, doi: 10.1093/nar/gkz757ChenYWangXmiRDB: an online database for prediction of functional microRNA targets.Nucleic Acids Research202048D12731doi10.1093/nar/gkz757Open DOISearch in Google Scholar
Chang L, Zhou G, Soufan O, Xia J. miRNet 2.0: network-based visual analytics for miRNA functional analysis and systems biology. Nucleic Acids Research 2020; 48: W244-51. 10.1093/nar/gkaa467ChangLZhouGSoufanOXiaJmiRNet 2.0: network-based visual analytics for miRNA functional analysis and systems biologyNucleic Acids Research202048W2445110.1093/nar/gkaa467Open DOISearch in Google Scholar
Hwang IC, Park JY, Myung SK, Ahn HY, Fukuda K, Liao Q. OPRM1 A118G gene variant and postoperative opioid requirement: a systematic review and meta-analysis. Anesthesiology 2014; 121: 825-34. doi: 10.1097/ALN.0000000000000405HwangICParkJYMyungSKAhnHYFukudaKLiaoQOPRM1 A118G gene variant and postoperative opioid requirement: a systematic review and meta-analysis.Anesthesiology201412182534doi10.1097/ALN.0000000000000405Open DOISearch in Google Scholar
National Library of Medicine (US), National Center for Biotechnology Information. db SNP: rs1799971. [cited 2022 Oct 30]. Available at: https://www.ncbi.nlm.nih.gov/snp/rs1799971National Library of Medicine (US)National Center for Biotechnology Information. db SNP: rs1799971[cited 2022 Oct 30]. Available at:https://www.ncbi.nlm.nih.gov/snp/rs1799971Search in Google Scholar
Matic M, de Hoogd S, de Wildt SN, Tibboel D, Knibbe CA, van Schaik RH. OPRM1 and COMT polymorphisms: implications on postoperative acute, chronic and experimental pain after cardiac surgery. Pharmacogenomics 2020; 21: 181-93. doi: 10.2217/pgs-2019-0141MaticMde HoogdSde WildtSNTibboelDKnibbeCAvan SchaikRH.OPRM1 and COMT polymorphisms: implications on postoperative acute, chronic and experimental pain after cardiac surgeryPharmacogenomics20202118193doi10.2217/pgs-2019-0141Open DOISearch in Google Scholar
Muriel J, Margarit C, Planelles B, Serralta MJ, Puga C, Inda MD, et al. OPRM1 influence on and effectiveness of an individualized treatment plan for prescription opioid use disorder patients. Ann N Y Acad Sci 2018; 1425: 82-93. doi: 10.1111/nyas.13735MurielJMargaritCPlanellesBSerraltaMJPugaCIndaMDet alOPRM1 influence on and effectiveness of an individualized treatment plan for prescription opioid use disorder patients.Ann N Y Acad Sci201814258293doi10.1111/nyas.13735Open DOISearch in Google Scholar
The Pharmacogenomics Knowledge Base (PharmGKB). Variant annotations: rs1799971. [cited 2022 Oct 30]. Avalable at: https://www.pharmgkb.org/variant/PA166156991/variantAnnotationThe Pharmacogenomics Knowledge Base (PharmGKB)Variant annotations: rs1799971[cited 2022 Oct 30]. Avalable at:https://www.pharmgkb.org/variant/PA166156991/variantAnnotationSearch in Google Scholar
Kroslak T, Laforge KS, Gianotti RJ, Ho A, Nielsen DA, Kreek MJ. The single nucleotide polymorphism A118G alters functional properties of the human mu opioid receptor. J Neurochem 2007; 103: 77-87. doi: 10.1111/j.1471-4159.2007.04738.xKroslakTLaforgeKSGianottiRJHoANielsenDAKreekMJThe single nucleotide polymorphism A118G alters functional properties of the human mu opioid receptor.J Neurochem20071037787doi10.1111/j.1471-4159.2007.04738.xOpen DOISearch in Google Scholar
National Library of Medicine (US), National Center for Biotechnology Information. db SNP: rs677830. [cited 2022 Oct 30]. Available at: https://www.ncbi.nlm.nih.gov/snp/rs677830National Library of Medicine (US)National Center for Biotechnology Information. db SNP: rs677830[cited 2022 Oct 30]. Available at:https://www.ncbi.nlm.nih.gov/snp/rs677830Search in Google Scholar
Wang L, Guyatt GH, Kennedy SA, Romerosa B, Kwon HY, Kaushal A, et al. Predictors of persistent pain after breast cancer surgery: a systematic review and meta-analysis of observational studies. CMAJ 2016; 188: E352-61. doi: 10.1503/cmaj.151276WangLGuyattGHKennedySARomerosaBKwonHYKaushalAet alPredictors of persistent pain after breast cancer surgery: a systematic review and meta-analysis of observational studies.CMAJ2016188E35261doi10.1503/cmaj.151276Open DOISearch in Google Scholar
Wu Q, Zhang L, Law PY, Na Wei LN, Loh HH. Long-term morphine treatment decreases the association of μ-opioid receptor (MOR1) mRNA with polysomes through miRNA23b. Mol Pharmacol 2009; 75: 744-50. doi: 10.1124/mol.108.053462WuQZhangLLawPYNa WeiLNLohHHLong-term morphine treatment decreases the association of μ-opioid receptor (MOR1) mRNA with polysomes through miRNA23bMol Pharmacol20097574450doi10.1124/mol.108.053462Open DOISearch in Google Scholar
Wang S, Lv C, Jin H, Xu M, Kang M, Chu H, et al. A common genetic variation in the promoter of miR-107 is associated with gastric adenocarcinoma susceptibility and survival. Mutat Res 2014; 769: 35-41. doi: 10.1016/j. mrfmmm.2014.07.002WangSLvCJinHXuMKangMChuHet alA common genetic variation in the promoter of miR-107 is associated with gastric adenocarcinoma susceptibility and survival.Mutat Res20147693541doi10.1016/j.mrfmmm.2014.07.002Open DOISearch in Google Scholar
Im YB, Jee MK, Choi JI, Cho HT, Kwon OH, Kang SK. Molecular targeting of NOX4 for neuropathic pain after traumatic injury of the spinal cord. Cell Death Dis 2012; 3: e426. doi: 10.1038/cddis.2012.168ImYBJeeMKChoiJIChoHTKwonOHKangSKMolecular targeting of NOX4 for neuropathic pain after traumatic injury of the spinal cord.Cell Death Dis20123e426doi10.1038/cddis.2012.168Open DOISearch in Google Scholar
Favereaux A, Thoumine O, Bouali-Benazzouz R, Roques V, Papon MA, Salam SA, et al. Bidirectional integrative regulation of Cav1.2 calcium channel by microRNA miR-103: role in pain. EMBO J 2011; 3018: 3830-41. doi: 10.1038/emboj.2011.249FavereauxAThoumineOBouali-BenazzouzRRoquesVPaponMASalamSAet alBidirectional integrative regulation of Cav1.2 calcium channel by microRNA miR-103: role in pain.EMBO J20113018383041doi10.1038/emboj.2011.249Open DOISearch in Google Scholar
Stamer UM, Zhang L, Stüber F. Personalized therapy in pain management: where do we stand? Pharmacogenomics 2010; 11: 843-64. doi: 10.2217/pgs.10.47StamerUMZhangLStüberFPersonalized therapy in pain management: where do we stand?Pharmacogenomics20101184364doi10.2217/pgs.10.47Open DOISearch in Google Scholar