Acceso abierto

The dose accumulation and the impact of deformable image registration on dose reporting parameters in a moving patient undergoing proton radiotherapy


Cite

Pedroni E, Bacher R, Blattmann H, Bohrinaer T, Coray A, Lomax A, et al. The 200-MeV proton therapy project at the Paul Scherrer Institute: conceptual design and practical realization. Med Phys 1995; 22: 37-53. doi: 10.1118/1.597522 Pedroni E Bacher R Blattmann H Bohrinaer T Coray A Lomax A et al The 200-MeV proton therapy project at the Paul Scherrer Institute: conceptual design and practical realization Med Phys 1995 22 37 53 10.1118/1.5975227715569Open DOISearch in Google Scholar

Degiovanni A, Amaldi U. History of hadron therapy accelerators. Phys Medica 2015; 31: 322-32. doi: 10.1016/j.ejmp.2015.03.002. Degiovanni A Amaldi U History of hadron therapy accelerators Phys Medica 2015 31 322 32 10.1016/j.ejmp.2015.03.00225812487Open DOISearch in Google Scholar

Terasawa T, Dvorak T, Ip S, Raman G, Lau J, Trikalinos TA. Systematic review: charged-particle radiation therapy for cancer. Ann Intern Med 2009; 151: 556-65. doi: 10.7326/0003-4819-151-8-200910200-00145 Terasawa T Dvorak T Ip S Raman G Lau J Trikalinos TA Systematic review: charged-particle radiation therapy for cancer Ann Intern Med 2009 151 556 65 10.7326/0003-4819-151-8-200910200-0014519755348Open DOISearch in Google Scholar

Verma V, Rwigema J-CM, Malyapa RS, Regine WF, Simone CB. Systematic assessment of clinical outcomes and toxicities of proton radiotherapy for reirradiation. Radiother Oncol 2017; 125: 21-30. doi: 10.1016/j.radonc.2017.08.005 Verma V Rwigema J-CM Malyapa RS Regine WF Simone CB Systematic assessment of clinical outcomes and toxicities of proton radiotherapy for reirradiation Radiother Oncol 2017 125 21 30 10.1016/j.radonc.2017.08.00528941560Open DOISearch in Google Scholar

Liao Z, Lee JJ, Komaki R, Gomez DR, O’Reilly MS, Fossella FV, et al. Bayesian adaptive randomization trial of passive scattering proton therapy and intensity-modulated photon radiotherapy for locally advanced non–small-cell lung cancer. J Clin Oncol 2018; 36: 1813-22. doi: 10.1200/JCO.2017.74.0720 Liao Z Lee JJ Komaki R Gomez DR O’Reilly MS Fossella FV et al Bayesian adaptive randomization trial of passive scattering proton therapy and intensity-modulated photon radiotherapy for locally advanced non–small-cell lung cancer J Clin Oncol 2018 36 1813 22 10.1200/JCO.2017.74.0720600810429293386Open DOISearch in Google Scholar

Jones B. Towards achieving the full clinical potential of proton therapy by inclusion of LET and RBE models. Cancers 2015; 7: 460-80. doi: 10.3390/cancers7010460 Jones B Towards achieving the full clinical potential of proton therapy by inclusion of LET and RBE models Cancers 2015 7 460 80 10.3390/cancers7010460438126925790470Open DOISearch in Google Scholar

Hu M, Jiang L, Cui X, Zhang J, Yu J. Proton beam therapy for cancer in the era of precision medicine. J Hematol Oncol 2018; 11: 136. doi: 10.1186/s13045-018-0683-4 Hu M Jiang L Cui X Zhang J Yu J Proton beam therapy for cancer in the era of precision medicine J Hematol Oncol 2018 11 136 10.1186/s13045-018-0683-4629050730541578Open DOISearch in Google Scholar

Kissick MW, Boswell SA, Jeraj R, Mackie TR. Confirmation, refinement, and extension of a study in intrafraction motion interplay with sliding jaw motion. Med Phys 2005; 32: 2346-50. doi: 10.1118/1.1935774 Kissick MW Boswell SA Jeraj R Mackie TR Confirmation, refinement, and extension of a study in intrafraction motion interplay with sliding jaw motion Med Phys 2005 32 2346 50 10.1118/1.193577428493566Open DOISearch in Google Scholar

Yu CX, Jaffray DA, Wong JW. The effects of intra-fraction organ motion on the delivery of dynamic intensity modulation. Phys Med Biol 1998; 43: 91-104. doi: 10.1088/0031-9155/43/1/006 Yu CX Jaffray DA Wong JW The effects of intra-fraction organ motion on the delivery of dynamic intensity modulation Phys Med Biol 1998 43 91 104 10.1088/0031-9155/43/1/0069483625Open DOISearch in Google Scholar

Engelsman M, Schwarz M, Dong L. Physics controversies in proton therapy. Semin Radiat Oncol 2013; 23: 88-96. doi: 10.1016/j.semradonc.2012.11.003 Engelsman M Schwarz M Dong L Physics controversies in proton therapy Semin Radiat Oncol 2013 23 88 96 10.1016/j.semradonc.2012.11.00323473685Open DOISearch in Google Scholar

Sonke JJ, Zijp L, Remeijer P, Van Herk M. Respiratory correlated cone beam CT. Med Phys 2005; 32: 1176-86. doi: 10.1118/1.1869074 Sonke JJ Zijp L Remeijer P Van Herk M Respiratory correlated cone beam CT Med Phys 2005 32 1176 86 10.1118/1.186907415895601Open DOISearch in Google Scholar

Widesott L, Amichetti M, Schwarz M. Proton therapy in lung cancer: clinical outcomes and technical issues. A systematic review. Radiother Oncol 2008; 86: 154-64. doi: 10.1016/j.radonc.2008.01.003 Widesott L Amichetti M Schwarz M Proton therapy in lung cancer: clinical outcomes and technical issues A systematic review. Radiother Oncol 2008 86 154 64 10.1016/j.radonc.2008.01.00318241945Open DOISearch in Google Scholar

De Ruysscher D, Sterpin E, Haustermans K, Depuydt T. Tumour movement in proton therapy: solutions and remaining questions: a review. Cancers 2015; 7: 1143-53. doi: 10.3390/cancers7030829 De Ruysscher D Sterpin E Haustermans K Depuydt T Tumour movement in proton therapy: solutions and remaining questions: a review Cancers 2015 7 1143 53 10.3390/cancers7030829458676226132317Open DOISearch in Google Scholar

Moteabbed M, Schuemann J, Paganetti H. Dosimetric feasibility of real-time MRI-guided proton therapy. Med Phys 2014; 41: 111713. doi: 10.1118/1.4897570 Moteabbed M Schuemann J Paganetti H Dosimetric feasibility of real-time MRI-guided proton therapy Med Phys 2014 41 111713 10.1118/1.4897570420901425370627Open DOISearch in Google Scholar

Pollard JM, Wen Z, Sadagopan R, Wang J, Ibbott GS. The future of image-guided radiotherapy will be MR guided. Br J Radiol 2017; 90: 20160667. doi: 10.1259/bjr.20160667 Pollard JM Wen Z Sadagopan R Wang J Ibbott GS The future of image-guided radiotherapy will be MR guided Br J Radiol 2017 90 20160667 10.1259/bjr.20160667560510128256898Open DOISearch in Google Scholar

Padilla-Cabal F, Georg D, Fuchs H. A pencil beam algorithm for magnetic resonance image-guided proton therapy. Med Phys 2018; 45: 2195-204. doi: 10.1002/mp.12854 Padilla-Cabal F Georg D Fuchs H A pencil beam algorithm for magnetic resonance image-guided proton therapy Med Phys 2018 45 2195 204 10.1002/mp.12854596911329532490Open DOISearch in Google Scholar

Ding GX, Alaei P, Curran B, Flynn R, Gossman M, Mackie TR, et al. Image guidance doses delivered during radiotherapy: quantification, management, and reduction: report of the AAPM Therapy Physics Committee Task Group 180. Med Phys 2018; 45: e84-99. doi: 10.1002/mp.12824 Ding GX Alaei P Curran B Flynn R Gossman M Mackie TR et al Image guidance doses delivered during radiotherapy: quantification, management, and reduction: report of the AAPM Therapy Physics Committee Task Group 180 Med Phys 2018 45 e84 99 10.1002/mp.1282429468678Open DOISearch in Google Scholar

Vedam SS, Keall PJ, Kini VR, Mostafavi H, Shukla HP, Mohan R. Acquiring a four-dimensional computed tomography dataset using an external respiratory signal. Phys Med Biol 2003; 48: 45-62. doi: 10.1088/00319155/48/1/304 Vedam SS Keall PJ Kini VR Mostafavi H Shukla HP Mohan R Acquiring a four-dimensional computed tomography dataset using an external respiratory signal Phys Med Biol 2003 48 45 62 10.1088/00319155/48/1/304Open DOISearch in Google Scholar

Pan T, Lee T-Y, Rietzel E, Chen GTY. 4D-CT imaging of a volume influenced by respiratory motion on multi-slice CT. Med Phys 2004; 31: 333-40. doi: 10.1118/1.1639993 Pan T Lee T-Y Rietzel E Chen GTY 4D-CT imaging of a volume influenced by respiratory motion on multi-slice CT Med Phys 2004 31 333 40 10.1118/1.163999315000619Open DOISearch in Google Scholar

Malicki J. The importance of accurate treatment planning, delivery, and dose verification. Reports Pract Oncol Radiother 2012; 17: 63-5. doi: 10.1016/j.rpor.2012.02.001 Malicki J The importance of accurate treatment planning, delivery, and dose verification Reports Pract Oncol Radiother 2012 17 63 5 10.1016/j.rpor.2012.02.001386326124377001Open DOISearch in Google Scholar

Gregoire V, MacKie TR. Dose prescription, reporting and recording in intensity-modulated radiation therapy: a digest of the ICRU Report 83. Imaging Med 2011; 3: 367-73. doi: 10.2217/IIM.11.22 Gregoire V Mackie TR Dose prescription, reporting and recording in intensity-modulated radiation therapy: a digest of the ICRU Report 83 Imaging Med 2011 3 367 73 10.2217/IIM.11.22Open DOISearch in Google Scholar

Jones D, Suit H, Kanematsu N, Tatsuzaki H, Tsujii H. Recording, and reporting proton-beam therapy ICRU Report 78. [Internet]. J ICRU 2007; 7: 1-210. [cited 2021 Mar 15]. Available at : https://www.icru.org/report/prescribing-recording-and-reporting-proton-beam-therapy-icru-report-78/ Jones D Suit H Kanematsu N Tatsuzaki H Tsujii H Recording, and reporting proton-beam therapy ICRU Report 78 [Internet]. J ICRU 2007 7 1 210 [cited 2021 Mar 15]. Available at https://www.icru.org/report/prescribing-recording-and-reporting-proton-beam-therapy-icru-report-78/10.1093/jicru_ndm021Search in Google Scholar

Yan D, Vicini F, Wong J, Martinez A. Adaptive radiation therapy. Phys Med Biol 1997; 42: 123-32. doi: 10.1088/0031-9155/42/1/008 Yan D Vicini F Wong J Martinez A Adaptive radiation therapy Phys Med Biol 1997 42 123 32 10.1088/0031-9155/42/1/0089015813Open DOISearch in Google Scholar

Dolde K, Naumann P, David C, Gnirs R, Kachelrieß M, Lomax AJ, et al. 4D dose calculation for pencil beam scanning proton therapy of pancreatic cancer using repeated 4DMRI datasets. Phys Med Biol 2018; 63: 165005. doi: 10.1088/1361-6560/aad43f Dolde K Naumann P David C Gnirs R Kachelrieß M Lomax AJ et al 4D dose calculation for pencil beam scanning proton therapy of pancreatic cancer using repeated 4DMRI datasets Phys Med Biol 2018 63 165005 10.1088/1361-6560/aad43f30020079Open DOISearch in Google Scholar

European Commission. CORDIS EU research results. Real-time Adaptive Particle Therapy of Cancer. RAPTOR [Internet]. [cited 2021 Mar 16]. Available at: https://cordis.europa.eu/project/id/955956 European Commission CORDIS EU research results. Real-time Adaptive Particle Therapy of Cancer RAPTOR [Internet]. [cited 2021 Mar 16]. Available at https://cordis.europa.eu/project/id/955956Search in Google Scholar

Zhong H, Jin J-Y. Recent advances and challenges in adaptive radiotherapy for patients with locally advanced NSCLC. Ann Radiat Ther Oncol 2017; 1: 1008. doi: 10.25107/2577-8757/arto-v1-id1008 Zhong H Jin J-Y Recent advances and challenges in adaptive radiotherapy for patients with locally advanced NSCLC Ann Radiat Ther Oncol 2017 1 1008 10.25107/2577-8757/arto-v1-id1008Open DOISearch in Google Scholar

Castillo R, Castillo E, Guerra R, Johnson VE, McPhail T, Garg AK, et al. A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets. Phys Med Biol 2009; 54: 1849-70. doi: 10.1088/0031-9155/54/7/001 Castillo R Castillo E Guerra R Johnson VE McPhail T Garg AK et al A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets Phys Med Biol 2009 54 1849 70 10.1088/0031-9155/54/7/00119265208Open DOISearch in Google Scholar

Castillo R. The deformable image registration laboratory. [Internet]. [cited 2021 Mar 17]. Available at: http://www.dir-lab.com/ Castillo R The deformable image registration laboratory. [Internet] [cited 2021 Mar 17]. Available at http://www.dir-lab.com/Search in Google Scholar

Aerts HJWL, Velazquez ER, Leijenaar RTH, Parmar C, Grossmann P, Carvalho S, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 2014; 5: 4006. doi: 10.1038/ncomms5006 Aerts HJWL Velazquez ER Leijenaar RTH Parmar C Grossmann P Carvalho S et al Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach Nat Commun 2014 5 4006 10.1038/ncomms5006405992624892406Open DOISearch in Google Scholar

Nationa Cancer Institute. Cancer Imaging program. The cancer imaging archive [Internet]. [cited 2021 Mar 18]. Available at: https://www.cancer-imagingarchive.net/ Nationa Cancer Institute Cancer Imaging program. The cancer imaging archive [Internet] [cited 2021 Mar 18]. Available at https://www.cancer-imagingarchive.net/Search in Google Scholar

Teoh S, Fiorini F, George B, Vallis KA, Van den Heuvel F. Proton vs photon: a model-based approach to patient selection for reduction of cardiac toxicity in locally advanced lung cancer. Radiother Oncol 2020; 152: 151-62. doi: 10.1016/j.radonc.2019.06.032 Teoh S Fiorini F George B Vallis KA Van den Heuvel F Proton vs photon: a model-based approach to patient selection for reduction of cardiac toxicity in locally advanced lung cancer Radiother Oncol 2020 152 151 62 10.1016/j.radonc.2019.06.032770735431431365Open DOISearch in Google Scholar

Mashnik SG. Stepan G. Validation and verification of MCNP6 as a new simulation tool useful for medical applications. [Internet]. 44th Annu Midyear Meet Heal Phys Soc 2011, Charleston, SC (United States); 6 Jan 2011; 24 p; Report No. LA-UR-11-00083. Avalable at: https://inis.iaea.org/search/search.aspx?orig_q=RN:43119331 Mashnik SG Stepan G Validation and verification of MCNP6 as a new simulation tool useful for medical applications. [Internet] 44th Annu Midyear Meet Heal Phys Soc 2011 Charleston, SC (United States); 6 Jan 2011; 24 p; Report No. LA-UR-11-00083. Avalable at https://inis.iaea.org/search/search.aspx?orig_q=RN:43119331Search in Google Scholar

Ardenfors O, Dasu A, Kopeć M, Gudowska I. Modelling of a proton spot scanning system using MCNP6. J Phys Conf Ser 2017; 860: 012025. doi: 10.1088/1742-6596/860/1/012025. Ardenfors O Dasu A Kopeć M Gudowska I Modelling of a proton spot scanning system using MCNP6 J Phys Conf Ser 2017 860 012025 10.1088/1742-6596/860/1/012025Open DOISearch in Google Scholar

Goorley T, James M, Booth T, Brown F, Bull J, Cox LJ, et al. Features of MCNP6. Ann Nucl Energy 2016; 87: 772-83. doi: 10.1016/j.anucene.2015.02.020 Goorley T James M Booth T Brown F Bull J Cox LJ et al Features of MCNP6 Ann Nucl Energy 2016 87 772 83 10.1016/j.anucene.2015.02.020Open DOISearch in Google Scholar

Schneider W, Bortfeld T, Schlegl W. Correlation between CT numbers and tissue parameters needed for Monte Carlo simulation of clinical dose distributions. Phys Med Biol 2000; 45: 459-78. doi: 10.1088/0031-9155/45/2/314 Schneider W Bortfeld T Schlegl W Correlation between CT numbers and tissue parameters needed for Monte Carlo simulation of clinical dose distributions Phys Med Biol 2000 45 459 78 10.1088/0031-9155/45/2/31410701515Open DOISearch in Google Scholar

Schneider U, Pedroni E, Lomax A. The calibration of CT Hounsfield units for radiotherapy treatment planning. Phys Med Biol 1996; 41: 111-24. doi: 10.1088/0031-9155/41/1/009 Schneider U Pedroni E Lomax A The calibration of CT Hounsfield units for radiotherapy treatment planning Phys Med Biol 1996 41 111 24 10.1088/0031-9155/41/1/0098685250Open DOISearch in Google Scholar

Paganetti H. Range uncertainties in proton therapy and the role of Monte Carlo simulations. Phys Med Biol 2012; 57: R99-117. doi: 10.1088/0031-9155/57/11/R99 Paganetti H Range uncertainties in proton therapy and the role of Monte Carlo simulations Phys Med Biol 2012 57 R99 117 10.1088/0031-9155/57/11/R99337450022571913Open DOISearch in Google Scholar

The Mathworks, Inc. MATLAB. version 9.3.0.713579 (R2017b). 2017. Natick, Massachusetts; 2017. The Mathworks, Inc MATLAB. version 9.3.0.713579 (R2017b) 2017 Natick, Massachusetts; 2017Search in Google Scholar

Klein S, Staring M, Murphy K, Viergever MA, Pluim JPW. Elastix: a toolbox for intensity-based medical image registration. IEEE Trans Med Imaging 2010; 29: 196-205. doi: 10.1109/TMI.2009.2035616 Klein S Staring M Murphy K Viergever MA Pluim JPW Elastix: a toolbox for intensity-based medical image registration IEEE Trans Med Imaging 2010 29 196 205 10.1109/TMI.2009.203561619923044Open DOISearch in Google Scholar

Staring M, Bakker ME, Stolk J, Shamonin DP, Reiber JH, Stoel BC. Towards local progression estimation of pulmonary emphysema using CT. Med Phys 2014; 41: 021905. doi: 10.1118/1.4851535 Staring M Bakker ME Stolk J Shamonin DP Reiber JH Stoel BC Towards local progression estimation of pulmonary emphysema using CT Med Phys 2014 41 021905 10.1118/1.485153524506626Open DOISearch in Google Scholar

Guy CL, Weiss E, Christensen GE, Jan N, Hugo GD. CALIPER: a deformable image registration algorithm for large geometric changes during radiotherapy for locally advanced non-small cell lung cancer. Med Phys 2018; 45: 2498508. doi: 10.1002/mp.12891 Guy CL Weiss E Christensen GE Jan N Hugo GD CALIPER: a deformable image registration algorithm for large geometric changes during radiotherapy for locally advanced non-small cell lung cancer Med Phys 2018 45 2498508 10.1002/mp.12891599753729603277Open DOISearch in Google Scholar

Mattes D, Haynor DR, Vesselle H, Lewellyn TK, Eubank W. Nonrigid multimodality image registration. Proc SPIE Med Imaging 2001; 4322: 1609-20. doi: 10.1117/12.431046 Mattes D Haynor DR Vesselle H Lewellyn TK Eubank W Nonrigid multimodality image registration Proc SPIE Med Imaging 2001 4322 1609 20 10.1117/12.431046Open DOISearch in Google Scholar

Pinter C, Lasso A, Wang A, Jaffray D, Fichtinger G. SlicerRT. Radiation therapy research toolkit for 3D Slicer. Med Phys 2012; 39: 6332-8. doi: 10.1118/1.4754659 Pinter C Lasso A Wang A Jaffray D Fichtinger G SlicerRT Radiation therapy research toolkit for 3D Slicer. Med Phys 2012 39 6332 8 10.1118/1.475465923039669Open DOISearch in Google Scholar

Gregoire V, Mackie TR, De Neve W, Gospodarowicz M, van Herk M, Niemierko A. Prescribing, recording, and reporting intensity-modulated photon-beam therapy (IMRT) ICRU Report 83. J ICRU 2010; 10: 1-35. doi: 10.1093/jicru/ndq001 Gregoire V Mackie TR De Neve W Gospodarowicz M van Herk M Niemierko A Prescribing, recording, and reporting intensity-modulated photon-beam therapy (IMRT) ICRU Report 83 J ICRU 2010 10 1 35 10.1093/jicru/ndq001Open DOISearch in Google Scholar

Low DA, Harms WB, Mutic S, Purdy JA. A technique for the quantitative evaluation of dose distributions. Med Phys 1998; 25: 656-61. doi: 10.1118/1.598248 Low DA Harms WB Mutic S Purdy JA A technique for the quantitative evaluation of dose distributions Med Phys 1998 25 656 61 10.1118/1.5982489608475Open DOISearch in Google Scholar

Amstutz F, Nenoff L, Albertini F, Ribeiro CO, Knopf AC, Unkelbach J, et al. An approach for estimating dosimetric uncertainties in deformable dose accumulation in pencil beam scanning proton therapy for lung cancer. Phys Med Biol 2021; 66: 105007. doi: 10.1088/1361-6560/abf8f5 Amstutz F Nenoff L Albertini F Ribeiro CO Knopf AC Unkelbach J et al An approach for estimating dosimetric uncertainties in deformable dose accumulation in pencil beam scanning proton therapy for lung cancer Phys Med Biol 2021 66 105007 10.1088/1361-6560/abf8f533862616Open DOISearch in Google Scholar

Schultheiss TE, Tome WA, Orton CG. Point/counterpoint: it is not appropriate to “deform” dose along with deformable image registration in adaptive radiotherapy. Med Phys 2012; 39: 6531-3. doi: 10.1118/1.4722968 Schultheiss TE Tome WA Orton CG Point/counterpoint: it is not appropriate to “deform” dose along with deformable image registration in adaptive radiotherapy Med Phys 2012 39 6531 3 10.1118/1.472296823127047Open DOISearch in Google Scholar

Schaly B, Kempe J, Venkatesan V, Mitchell S, Battista JJ. Using gamma index to flag changes in anatomy during image-guided radiation therapy of head and neck cancer. J Appl Clin Med Phys 2017; 18: 79-87. doi: 10.1002/acm2.12180 Schaly B Kempe J Venkatesan V Mitchell S Battista JJ Using gamma index to flag changes in anatomy during image-guided radiation therapy of head and neck cancer J Appl Clin Med Phys 2017 18 79 87 10.1002/acm2.12180568993628901659Open DOISearch in Google Scholar

Houweling AC, Crama K, Visser J, Fukata K, Rasch CRN, Ohno T, et al. Comparing the dosimetric impact of interfractional anatomical changes in photon, proton and carbon ion radiotherapy for pancreatic cancer patients. Phys Med Biol 2017; 62: 3051-64. doi: 10.1088/1361-6560/aa6419 Houweling AC Crama K Visser J Fukata K Rasch CRN Ohno T et al Comparing the dosimetric impact of interfractional anatomical changes in photon, proton and carbon ion radiotherapy for pancreatic cancer patients Phys Med Biol 2017 62 3051 64 10.1088/1361-6560/aa641928252445Open DOISearch in Google Scholar

Rehfeld NS, Stute S, Apostolakis J, Soret M, Buvat I. Introducing improved voxel navigation and fictitious interaction tracking in GATE for enhanced efficiency. Phys Med Biol 2009; 54: 2163-78. doi: 10.1088/0031-9155/54/7/021 Rehfeld NS Stute S Apostolakis J Soret M Buvat I Introducing improved voxel navigation and fictitious interaction tracking in GATE for enhanced efficiency Phys Med Biol 2009 54 2163 78 10.1088/0031-9155/54/7/02119293466Open DOISearch in Google Scholar

Yuan J, Chen Q, Brindle J, Zheng Y, Lo S, Sohn J, et al. Investigation of nonuniform dose voxel geometry in Monte Carlo calculations. Technol Cancer Res Treat 2015; 14: 419-27. doi: 10.1177/1533034614547459 Yuan J Chen Q Brindle J Zheng Y Lo S Sohn J et al Investigation of nonuniform dose voxel geometry in Monte Carlo calculations Technol Cancer Res Treat 2015 14 419 27 10.1177/153303461454745925223321Open DOISearch in Google Scholar

Liu W, Zhang X, Li Y, Mohan R. Robust optimization of intensity modulated proton therapy. Med Phys 2012; 39: 1079-91. doi: 10.1118/1.3679340 Liu W Zhang X Li Y Mohan R Robust optimization of intensity modulated proton therapy Med Phys 2012 39 1079 91 10.1118/1.3679340328197522320818Open DOISearch in Google Scholar

Yan S, Depauw N, Flanz J, Adams J, Gorissen BL, Shih H, et al. SU-F-T-207: does the greater flexibility of pencil beam scanning reduce the need for a proton gantry? Med Phys 2016; 43: 3509-10. doi:10.1118/1.4956345 Yan S Depauw N Flanz J Adams J Gorissen BL Shih H et al SU-F-T-207: does the greater flexibility of pencil beam scanning reduce the need for a proton gantry? Med Phys 2016 43 3509 10 10.1118/1.4956345Open DOISearch in Google Scholar

Graeff C, Lüchtenborg R, Eley JG, Durante M, Bert C. A 4D-optimization concept for scanned ion beam therapy. Radiother Oncol 2013; 109: 419-24. doi: 10.1016/j.radonc.2013.09.018 Graeff C Lüchtenborg R Eley JG Durante M Bert C A 4D-optimization concept for scanned ion beam therapy Radiother Oncol 2013 109 419 24 10.1016/j.radonc.2013.09.01824183865Open DOISearch in Google Scholar

Nenoff L, Ribeiro CO, Matter M, Hafner L, Josipovic M, Langendijk JA, et al. Deformable image registration uncertainty for inter-fractional dose accumulation of lung cancer proton therapy. Radiother Oncol 2020; 147: 178-85. doi: 10.1016/j.radonc.2020.04.046 Nenoff L Ribeiro CO Matter M Hafner L Josipovic M Langendijk JA et al Deformable image registration uncertainty for inter-fractional dose accumulation of lung cancer proton therapy Radiother Oncol 2020 147 178 85 10.1016/j.radonc.2020.04.04632380117Open DOISearch in Google Scholar

eISSN:
1581-3207
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Medicine, Clinical Medicine, Internal Medicine, Haematology, Oncology, Radiology