Acceso abierto

MicroRNAs and long non-coding RNAs: prospects in diagnostics and therapy of cancer


Cite

1. Iorio MV, Croce CM. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med 2012; 4: 143-59.10.1002/emmm.201100209337684522351564Search in Google Scholar

2. Mattick JS. The Genetic Signatures of Noncoding RNAs. PLoS Genet 2009; 5.10.1371/journal.pgen.1000459266726319390609Search in Google Scholar

3. Eddy SR. Non-coding RNA genes and the modern RNA world. Nat RevGenet 2001; 2: 919-29.10.1038/3510351111733745Search in Google Scholar

4. Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet 2009; 10: 155-9.10.1038/nrg252119188922Search in Google Scholar

5. Kapranov P, Drenkow J, Cheng J, Long J, Helt G, Dike S, et al. Examples of the complex architecture of the human transcriptome revealed by RACE and high-density tiling arrays. Genome Res 2005; 15: 987-97.10.1101/gr.3455305117204315998911Search in Google Scholar

6. Sana J, Faltejskova P, Svoboda M, Slaby O. Novel classes of non-coding RNAs and cancer. J Transl Med 2012; 10: 103.10.1186/1479-5876-10-103343402422613733Search in Google Scholar

7. Zen K, Zhang CY. Circulating MicroRNAs: a novel class of biomarkers to diagnose and monitor human cancers. Med Res Rev 2012; 32: 326-48.10.1002/med.2021522383180Search in Google Scholar

8. Taft RJ, Pang KC, Mercer TR, Dinger M, Mattick JS. Non-coding RNAs: regulators of disease. J Pathol 2010; 220: 126-39.10.1002/path.263819882673Search in Google Scholar

9. Cortez MA, Bueso-Ramos C, Ferdin J, Lopez-Berestein G, Sood AK, Calin GA. MicroRNAs in body fluids-the mix of hormones and biomarkers. Nat RevClin Oncol 2011; 8: 467-77.10.1038/nrclinonc.2011.76342322421647195Search in Google Scholar

10. Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu RevBiochem 2012; 81: 145-66.Search in Google Scholar

11. Siomi MC, Sato K, Pezic D, Aravin AA. PIWI-interacting small RNAs: the vanguard of genome defence. Nat Rev Mol Cell Bio 2011; 12: 246-58.10.1038/nrm308921427766Search in Google Scholar

12. Williams GT, Farzaneh F. Are snoRNAs and snoRNA host genes new players in cancer? Nat Rev Cancer 2012; 12: 84-8.Search in Google Scholar

13. Montanaro L, Trere D, Derenzini M. Nucleolus, ribosomes, and cancer. AmJ Pathol 2008; 173: 301-10.10.2353/ajpath.2008.070752Search in Google Scholar

14. Lares MR, Rossi JJ, Ouellet DL. RNAi and small interfering RNAs in human disease therapeutic applications. Trends Biotechnol 2010; 28: 570-9.10.1016/j.tibtech.2010.07.009Search in Google Scholar

15. Mesojednik S, Kamensek U, Cemazar M. Evaluation of shRNA-mediated gene silencing by electroporation in LPB fibrosarcoma cells. Radiol Oncol 2008; 42: 82-92.10.2478/v10019-008-0007-3Search in Google Scholar

16. Wu XY, Zhong DX, Lin B, Zhai WL, Ding ZQ, Wu J. p38 MAPK regulates the expression of ether a go-go potassium channel in human osteosarcoma cells. Radiol Oncol 2013; 47: 42-9.10.2478/v10019-012-0043-xSearch in Google Scholar

17. Zhao SH, Zhao F, Zheng JY, Gao LF, Zhao XJ, Cui MH. Knockdown of stat3 expression by RNAi inhibits in vitro growth of human ovarian cancer. RadiolOncol 2011; 45: 196-203.10.2478/v10019-011-0013-8Search in Google Scholar

18. Hui A, How C, Ito E, Liu FF. Micro-RNAs as diagnostic or prognostic markers in human epithelial malignancies. BMC Cancer 2011; 11: 500.10.1186/1471-2407-11-500Search in Google Scholar

19. Bustin SA, Murphy J. RNA biomarkers in colorectal cancer. Methods 2013; 59: 116-25.10.1016/j.ymeth.2012.10.003Search in Google Scholar

20. Bresters D, Schipper MEI, Reesink HW, Boesernunnink BDM, Cuypers HTM. The Duration of Fixation Influences the Yield of Hcv Cdna-Pcr Products from Formalin-Fixed, Paraffin-Embedded Liver-Tissue. J Virol Methods 1994; 48: 267-72.10.1016/0166-0934(94)90125-2Search in Google Scholar

21. Cronin M, Pho M, Dutta D, Stephans JC, Shak S, Kiefer MC, et al. Measurement of gene expression in archival paraffin-embedded tissues: development and performance of a 92-gene reverse transcriptase-polymerase chain reaction assay. Am J Pathol 2004; 164: 35-42.10.1016/S0002-9440(10)63093-3Search in Google Scholar

22. Nelson PT, Baldwin DA, Scearce LM, Oberholtzer JC, Tobias JW, Mourelatos Z. Microarray-based, high-throughput gene expression profiling of microRNAs. Nature Methods 2004; 1: 155-61.10.1038/nmeth71715782179Search in Google Scholar

23. Hui AB, Shi W, Boutros PC, Miller N, Pintilie M, Fyles T, et al. Robust global micro-RNA profiling with formalin-fixed paraffin-embedded breast cancer tissues. Lab Invest 2009; 89: 597-606.10.1038/labinvest.2009.1219290006Search in Google Scholar

24. Lu Z, Liu M, Stribinskis V, Klinge CM, Ramos KS, Colburn NH, et al. MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 2008; 27: 4373-9.10.1038/onc.2008.7218372920Search in Google Scholar

25. Asangani IA, Rasheed SAK, Nikolova DA, Leupold JH, Colburn NH, Post S, et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 2008; 27: 2128-36.10.1038/sj.onc.121085617968323Search in Google Scholar

26. Sempere LF, Christensen M, Silahtaroglu A, Bak M, Heath CV, Schwartz G, et al. Altered microRNA expression confined to specific epithelial cell Subpopulations in breast cancer. Cancer Res 2007; 67: 11612-20.10.1158/0008-5472.CAN-07-501918089790Search in Google Scholar

27. Roth C, Rack B, Muller V, Janni W, Pantel K, Schwarzenbach H. Circulating microRNAs as blood-based markers for patients with primary and metastatic breast cancer. Breast Cancer Res 2010; 12: R90.10.1186/bcr2766304642921047409Search in Google Scholar

28. Wang FJ, Zheng ZG, Guo JF, Ding XF. Correlation and quantitation of microRNA aberrant expression in tissues and sera from patients with breast tumor. Gynecol Oncol 2010; 119: 586-93.10.1016/j.ygyno.2010.07.02120801493Search in Google Scholar

29. Heneghan HM, Miller N, Kelly R, Newell J, Kerin MJ. Systemic miRNA-195 Differentiates Breast Cancer from Other Malignancies and Is a Potential Biomarker for Detecting Noninvasive and Early Stage Disease. Oncologist 2010; 15: 673-82.10.1634/theoncologist.2010-0103322801220576643Search in Google Scholar

30. Lebanony D, Benjamin H, Gilad S, Ezagouri M, Dov A, Ashkenazi K, et al. Diagnostic Assay Based on hsa-miR-205 Expression Distinguishes Squamous From Nonsquamous Non-Small-Cell Lung Carcinoma. J ClinOncol 2009; 27: 2030-7.10.1200/JCO.2008.19.413419273703Search in Google Scholar

31. Roth C, Kasimir-Bauer S, Pantel K, Schwarzenbach H. Screening for circulating nucleic acids and caspase activity in the peripheral blood as potential diagnostic tools in lung cancer. Mol Oncol 2011; 5: 281-91.10.1016/j.molonc.2011.02.002552829221398193Search in Google Scholar

32. Xiao BX, Guo JM, Miao Y, Jiang Z, Huan R, Zhang YY, et al. Detection of miR-106a in gastric carcinoma and its clinical significance. Clin Chim Acta 2009; 400: 97-102.10.1016/j.cca.2008.10.02118996365Search in Google Scholar

33. Zhang YY, Guo JM, Li D, Xiao BX, Miao Y, Jiang Z, et al. Down-regulation of miR-31 expression in gastric cancer tissues and its clinical significance. MedOncol 2010; 27: 685-9.10.1007/s12032-009-9269-x19598010Search in Google Scholar

34. Zhang CN, Wang C, Chen X, Yang CH, Li K, Wang JJ, et al. Expression Profile of MicroRNAs in Serum: A Fingerprint for Esophageal Squamous Cell Carcinoma. Clin Chem 2010; 56: 1871-9.10.1373/clinchem.2010.14755320943850Search in Google Scholar

35. Liu R, Zhang CN, Hu ZB, Li G, Wang C, Yang CH, et al. A five-microRNA signature identified from genome-wide serum microRNA expression profiling serves as a fingerprint for gastric cancer diagnosis. Eur J Cancer 2011; 47: 784-91.10.1016/j.ejca.2010.10.02521112772Search in Google Scholar

36. Bloomston M, Frankel WL, Petrocca F, Volinia S, Alder H, Hagan JP, et al. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. Jama-J Am Med Assoc 2007; 297: 1901-8.10.1001/jama.297.17.190117473300Search in Google Scholar

37. Habbe N, Koorstra JBM, Mendell JT, Offerhaus GJ, Ryu JK, Feldmann G, et al. MicroRNA miR-155 is a biomarker of early pancreatic neoplasia. CancerBiol Ther 2009; 8: 340-6.10.1007/978-3-642-00625-8_1Search in Google Scholar

38. du Rieu MC, Torrisani J, Selves J, Al Saati T, Souque A, Dufresne M, et al. MicroRNA-21 Is Induced Early in Pancreatic Ductal Adenocarcinoma Precursor Lesions. Clin Chem 2010; 56: 603-12.10.1373/clinchem.2009.13736420093556Search in Google Scholar

39. Kong XY, Du YQ, Wang GK, Gao J, Gong YF, Li L, et al. Detection of Differentially Expressed microRNAs in Serum of Pancreatic Ductal Adenocarcinoma Patients: miR-196a Could Be a Potential Marker for Poor Prognosis. Dig Dis Sci 2011; 56: 602-9.10.1007/s10620-010-1285-320614181Search in Google Scholar

40. Ho AS, Huang X, Cao HB, Christman-Skieller C, Bennewith K, Le QT, et al. Circulating miR-210 as a Novel Hypoxia Marker in Pancreatic Cancer. TranslOncol 2010; 3: 109-13.Search in Google Scholar

41. Wang J, Chen JY, Chang P, LeBlanc A, Li DH, Abbruzzesse JL, et al. MicroRNAs in Plasma of Pancreatic Ductal Adenocarcinoma Patients as Novel Blood-Based Biomarkers of Disease. Cancer Prev Res 2009; 2: 807-13.10.1158/1940-6207.CAPR-09-0094585919319723895Search in Google Scholar

42. Shi XB, Xue L, Yang J, Ma AH, Zhao J, Xu M, et al. An androgen-regulated miRNA suppresses Bak1 expression and induces androgen-independent growth of prostate cancer cells. Proc Natl Acad Sci USA 2007; 104: 19983-8.10.1073/pnas.0706641104214840918056640Search in Google Scholar

43. Bonci D, Coppola V, Musumeci M, Addario A, Giuffrida R, Memeo L, et al. The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med 2008; 14: 1271-7.10.1038/nm.188018931683Search in Google Scholar

44. Saini S, Majid S, Yamamura S, Tabatabai L, Suh SO, Shahryari V, et al. Regulatory Role of mir-203 in Prostate Cancer Progression and Metastasis. Clin Cancer Res 2011; 17: 5287-98.10.1158/1078-0432.CCR-10-261921159887Search in Google Scholar

45. Hagman Z, Larne O, Edsjo A, Bjartell A, Ehrnstrom RA, Ulmert D, et al. miR-34c is downregulated in prostate cancer and exerts tumor suppressive functions. Int J Cancer 2010; 127: 2768-76.10.1002/ijc.2526921351256Search in Google Scholar

46. Spahn M, Kneitz S, Scholz CJ, Stenger N, Rudiger T, Strobel P, et al. Expression of microRNA-221 is progressively reduced in aggressive prostate cancer and metastasis and predicts clinical recurrence. Int J Cancer 2010; 127: 394-403.Search in Google Scholar

47. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 2008; 105: 10513-8.10.1073/pnas.0804549105249247218663219Search in Google Scholar

48. Brase JC, Johannes M, Schlomm T, Falth M, Haese A, Steuber T, et al. Circulating miRNAs are correlated with tumor progression in prostate cancer. Int J Cancer 2011; 128: 608-16.10.1002/ijc.2537620473869Search in Google Scholar

49. Zhang HL, Yang LF, Zhu Y, Yao XD, Zhang SL, Dai B, et al. Serum miRNA-21: Elevated Levels in Patients With Metastatic Hormone-Refractory Prostate Cancer and Potential Predictive Factor for the Efficacy of Docetaxel-Based Chemotherapy. Prostate 2011; 71: 326-31.10.1002/pros.2124620842666Search in Google Scholar

50. Agaoglu FY, Kovancilar M, Dizdar Y, Darendeliler E, Holdenrieder S, Dalay N, et al. Investigation of miR-21, miR-141, and miR-221 in blood circulation of patients with prostate cancer. Tumor Biology 2011; 32: 583-8.10.1007/s13277-011-0154-921274675Search in Google Scholar

51. Bryant RJ, Pawlowski T, Catto JWF, Marsden G, Vessella RL, Rhees B, et al. Changes in circulating microRNA levels associated with prostate cancer. BrJ Cancer 2012; 106: 768-74.10.1038/bjc.2011.595332295222240788Search in Google Scholar

52. Kluiver J, Poppema S, de Jong D, Blokzijl T, Harms G, Jacobs S, et al. BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J Pathol 2005; 207: 243-9.10.1002/path.182516041695Search in Google Scholar

53. Huang ZH, Huang D, Ni SJA, Peng ZL, Sheng WQ, Du X. Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. IntJ Cancer 2010; 127: 118-26.10.1002/ijc.2500719876917Search in Google Scholar

54. Cheng HY, Zhang LN, Cogdell DE, Zheng H, Schetter AJ, Nykter M, et al. Circulating Plasma MiR-141 Is a Novel Biomarker for Metastatic Colon Cancer and Predicts Poor Prognosis. PLoS One 2011; 6: e17745.10.1371/journal.pone.0017745306016521445232Search in Google Scholar

55. Ferracin M, Pedriali M, Veronese A, Zagatti B, Gafa R, Magri E, et al. MicroRNA profiling for the identification of cancers with unknown primary tissue-of-origin. J Pathol 2011; 225: 43-53.10.1002/path.2915Search in Google Scholar

56. Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 2010; 464: 1071-6.10.1038/nature08975Search in Google Scholar

57. Geng YJ, Xie SL, Li Q, Ma J, Wang GY. Large Intervening Non-coding RNA HOTAIR is Associated with Hepatocellular Carcinoma Progression. J Int MedRes 2011; 39: 2119 - 28.10.1177/147323001103900608Search in Google Scholar

58. Yu W, Gius D, Onyango P, Muldoon-Jacobs K, Karp J, Feinberg AP, et al. Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature 2008; 451: 202-6.10.1038/nature06468Search in Google Scholar

59. Chen W, Böcker W, Brosius J, Tiedge H. Expression of neural BC200 RNA in human tumours. J Pathol 1997; 183: 345-51.10.1002/(SICI)1096-9896(199711)183:3<345::AID-PATH930>3.0.CO;2-8Search in Google Scholar

60. Iacoangeli A, Lin Y, Morley EJ, Muslimov IA, Bianchi R, Reilly J, et al. BC200 RNA in invasive and preinvasive breast cancer. Carcinogenesis 2004; 25: 2125-33.10.1093/carcin/bgh228Search in Google Scholar

61. Chung S, Nakagawa H, Uemura M, Piao L, Ashikawa K, Hosono N, et al. Association of a novel long non-coding RNA in 8q24 with prostate cancer susceptibility. Cancer Sci 2011; 102: 245-52.10.1111/j.1349-7006.2010.01737.xSearch in Google Scholar

62. Gabory A, Jammes H, Dandolo L. The H19 locus: role of an imprinted noncoding RNA in growth and development. Bioessays 2010; 32: 473-80.10.1002/bies.200900170Search in Google Scholar

63. Hibi K, Nakamura H, Hirai A, al. e. Loss of H19 imprinting in esophageal cancer. Cancer Res 1996; 56: 480-2.Search in Google Scholar

64. Fellig Y, Ariel I, Ohana P, Schachter P, Sinelnikov I, Birman T, et al. H19 expression in hepatic metastases from a range of human carcinomas. J ClinPathol 2005; 58: 1064-8.10.1136/jcp.2004.023648Search in Google Scholar

65. Matouk IJ, DeGroot N, Mezan S, Ayesh S, Abu-lail R, Hochberg A, et al. The H19 non-coding RNA is essential for human tumor growth. PLoS One 2007; 2: e845.10.1371/journal.pone.0000845Search in Google Scholar

66. Arima T, Matsuda T, Takagi N, Wake N. Association of IGF2 and H19 imprinting with choriocarcinoma development. Cancer Genet Cytogenet 1997; 93: 39-47.10.1016/S0165-4608(96)00221-XSearch in Google Scholar

67. Berteaux N, Lottin S, Monte D, Pinte S, Quatannens B, Coll J, et al. H19 mRNA-like noncoding RNA promotes breast cancer cell proliferation through positive control by E2F1. J Biol Chem 2005; 280: 29625-36.10.1074/jbc.M50403320015985428Search in Google Scholar

68. Barsyte-Lovejoy D, Lau SK, Boutros PC, Khosravi F, Jurisica I, Andrulis IL, et al. The c-Myc oncogene directly induces the H19 noncoding RNA by allelespecific binding to potentiate tumorigenesis. Cancer Res 2006; 66: 5330-7.10.1158/0008-5472.CAN-06-003716707459Search in Google Scholar

69. Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science 2010; 329: 689-93.10.1126/science.1192002296777720616235Search in Google Scholar

70. Yang Z, Zhou L, Wu LM, Lai MC, Xie HY, Zhang F, et al. Overexpression of long non-coding RNA HOTAIR predicts tumor recurrence in hepatocellular carcinoma patients following liver transplantation. Ann Surg Oncol 2011; 18: 1243-50.10.1245/s10434-011-1581-y21327457Search in Google Scholar

71. Matouk IJ, Abbasi I, Hochberg A, Galun E, Dweik H, Akkawi M. Highly upregulated in liver cancer noncoding RNA is overexpressed in hepatic colorectal metastasis. Eur J Gastroenterol Hepatol 2009; 21: 688-92.10.1097/MEG.0b013e328306a3a219445043Search in Google Scholar

72. Panzitt K, Tschernatsch MM, Guelly C, Moustafa T, Stradner M, Strohmaier HM, et al. Characterization of HULC, a novel gene with striking up-regulation in hepatocellular carcinoma, as noncoding RNA. Gastroenterology 2007; 132: 330-42.10.1053/j.gastro.2006.08.02617241883Search in Google Scholar

73. Guffanti A, Iacono M, Pelucchi P, Kim N, Solda G, Croft LJ, et al. A transcriptional sketch of a primary human breast cancer by 454 deep sequencing. BMC Genomics 2009; 10: 163. 10.1186/1471-2164-10-163267816119379481Search in Google Scholar

74. Yamada K, Kano J, Tsunoda H, Yoshikawa H, Okubo C, Ishiyama T, et al. Phenotypic characterization of endometrial stromal sarcoma of the uterus. Cancer Sci 2006; 97: 106-12.10.1111/j.1349-7006.2006.00147.x16441420Search in Google Scholar

75. Lin R, Maeda S, Liu C, Karin M, Edgington TS. A large noncoding RNA is a marker for murine hepatocellular carcinomas and a spectrum of human carcinomas. Oncogene 2007; 26: 851-8.10.1038/sj.onc.120984616878148Search in Google Scholar

76. Luo JH, Ren B, Keryanov S, Tsang GC, Reo UNM, Monga SP, et al. Transcriptomic and genomic analysis of human hepatocellular carcinomas and hepatoblastomas. Hepatology 2006; 44: 1012-24.10.1002/hep.21328176955417006932Search in Google Scholar

77. Gejman R, Batista DL, Zhong Y, Zhou Y, Zhang X, Swearingen B, et al. Selective loss of MEG3 expression and intergenic differentially methylated region hypermethylation in the MEG3/DLK1 locus in human clinically nonfunctioning pituitary adenomas. J Clin Endocrinol Metab 2008; 93: 4119-25.10.1210/jc.2007-2633257963918628527Search in Google Scholar

78. Benetatos L, Vartholomatos G, Hatzimichael E. MEG3 imprinted gene contribution in tumorigenesis. Int J Cancer 2011; 129: 773-9.10.1002/ijc.2605221400503Search in Google Scholar

79. Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 2010; 465: 1033-8.10.1038/nature09144320631320577206Search in Google Scholar

80. Khaitan D, Dinger ME, Mazar J, Crawford J, Smith MA, Mattick JS, et al. The melanoma-upregulated long noncoding RNA SPRY4-IT1 modulates apoptosis and invasion. Cancer Res 2011; 71: 3852-62.10.1158/0008-5472.CAN-10-446021558391Search in Google Scholar

81. Lanz RB, Chua SS, Barron N, Soder BM, DeMayo F, O’Malley BW. Steroid Receptor RNA Activator Stimulates Proliferation as Well as Apoptosis In Vivo. Mol Cell Biol 2003; 23: 7163-76.10.1128/MCB.23.20.7163-7176.200323030914517287Search in Google Scholar

82. Chooniedass-Kothari S, Vincett D, Yan Y, Cooper C, Hamedani MK, Myal Y, et al. The protein encoded by the functional steroid receptor RNA activator is a new modulator of ER alpha transcriptional activity. FEBS Lett 2010; 584: 1174-80.10.1016/j.febslet.2010.02.02420153324Search in Google Scholar

83. Wang F, Li X, Xie X, Zhao L, Chen W. UCA1, a non-protein-coding RNA upregulated in bladder carcinoma and embryo, influencing cell growth and promoting invasion. FEBS Lett 2008; 582: 1919-27.10.1016/j.febslet.2008.05.01218501714Search in Google Scholar

84. Wang XS, Zhang Z, Wang HC, Cai JL, Xu QW, Li MQ, et al. Rapid identification of UCA1 as a very sensitive and specific unique marker for human bladder carcinoma. Clin Cancer Res 2006; 12: 4851-8.10.1158/1078-0432.CCR-06-013416914571Search in Google Scholar

85. de Kok JB, Verhaegh GW, Roelofs RW, Hessels D, Kiemeney LA, Aalders TW, et al. DD3(PCA3), a very sensitive and specific marker to detect prostate tumors. Cancer Res 2002; 62: 2695-89.Search in Google Scholar

86. Mourtada-Maarabouni M, Pickard MR, Hedge VL, Farzaneh F, Williams GT. GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene 2009; 28: 195-208.10.1038/onc.2008.37318836484Search in Google Scholar

87. Yap KL, Li S, Munoz-Cabello AM, Raguz S, Zeng L, Mujtaba S, et al. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. MolCell 2010; 38: 662-74.10.1016/j.molcel.2010.03.021288630520541999Search in Google Scholar

88. Rajaram V, Knezevich S, Bove KE, Perry A, Pfeifer JD. DNA sequence of the translocation breakpoints in undifferentiated embryonal sarcoma arising in mesenchymal hamartoma of the liver harboring the t(11;19)(q11;q13.4) translocation. Genes Chromosom Cancer 2007; 46: 508-13.10.1002/gcc.2043717311249Search in Google Scholar

89. Lai MC, Yang Z, Zhou L, Zhu QQ, Xie HY, Zhang F, et al. Long non-coding RNA MALAT-1 overexpression predicts tumor recurrence of hepatocellular carcinoma after liver transplantation. Med Oncol 2012; 29: 1810-6.10.1007/s12032-011-0004-z21678027Search in Google Scholar

90. Kino T, Hurt DE, Ichijo T, Nader N, Chrousos GP. Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci Signal 2010; 3: ra8.10.1126/scisignal.2000568281921820124551Search in Google Scholar

91. Marks LS, Fradet Y, Deras IL, Blase A, Mathis J, Aubin SMJ, et al. PCA3 molecular urine assay for prostate cancer in men undergoing repeat biopsy. Urology 2007; 69: 532-5.10.1016/j.urology.2006.12.01417382159Search in Google Scholar

92. Tinzl M, Marberger M, Horvath S, Chypre C. DD3PCA3 RNA Analysis in Urine - a new perspective for detecting prostate cancer. Eur Urol 2004; 46: 182-7.10.1016/j.eururo.2004.06.00415245811Search in Google Scholar

93. Neves AF, Dias-Oliveira JDD, Araujo TG, Marangoni K, Goulart LR. Prostate cancer antigen 3 (PCA3) RNA detection in blood and tissue samples for prostate cancer diagnosis. Clin Chem Lab Med 2013; 51: 881-7.10.1515/cclm-2012-039223241599Search in Google Scholar

94. Oberg AL, French AJ, Sarver AL, Subramanian S, Morlan BW, Riska SM, et al. miRNA Expression in Colon Polyps Provides Evidence for a Multihit Model of Colon Cancer. PLoS One 2011; 6: e20465.10.1371/journal.pone.0020465311141921694772Search in Google Scholar

95. Kent OA, Mendell JT. A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes. Oncogene 2006; 25: 6188-96.10.1038/sj.onc.120991317028598Search in Google Scholar

96. Kota SK, Balasubramanian S. Cancer therapy via modulation of micro RNA levels: a promising future. Drug Discov Today 2010; 15: 733-40.10.1016/j.drudis.2010.07.00320692360Search in Google Scholar

97. Bader AG, Brown D, Stoudemire J, Lammers P. Developing therapeutic microRNAs for cancer. Gene Ther 2011; 18: 1121-6.10.1038/gt.2011.79391043221633392Search in Google Scholar

98. Broderick JA, Zamore PD. MicroRNA therapeutics. Gene Ther 2011; 18: 1104-10.10.1038/gt.2011.50323782821525952Search in Google Scholar

99. Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 2009; 10: 704-14.10.1038/nrg2634346709619763153Search in Google Scholar

100. Bader AG, Brown D, Winkler M. The Promise of MicroRNA Replacement Therapy. Cancer Res 2010; 70: 7027-30.10.1158/0008-5472.CAN-10-2010294094320807816Search in Google Scholar

101. Dolinsek T, Markelc B, Sersa G, Coer A, Stimac M, Lavrencak J, et al. Multiple Delivery of siRNA against Endoglin into Murine Mammary Adenocarcinoma Prevents Angiogenesis and Delays Tumor Growth. PLoSOne 2013; 8: e58723.10.1371/journal.pone.0058723358934823593103Search in Google Scholar

102. Todorovic V, Sersa G, Cemazar M. Gene electrotransfer of siRNAs against CD146 inhibits migration and invasion of human malignant melanoma cells SK-MEL28. Cancer Gene Ther 2013; 20: 208-10.10.1038/cgt.2013.323370332Search in Google Scholar

103. Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY. miR-21-mediated tumor growth. Oncogene 2007; 26: 2799-803.10.1038/sj.onc.121008317072344Search in Google Scholar

104. Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nature Methods 2007; 4: 721-6.10.1038/nmeth1079385709917694064Search in Google Scholar

105. Ma L, Young J, Prabhala H, Pan E, Mestdagh P, Muth D, et al. miR-9, a MYC/ MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol 2010; 12: 247-52.10.1038/ncb2024284554520173740Search in Google Scholar

106. Trang P, Medina PP, Wiggins JF, Ruffino L, Kelnar K, Omotola M, et al. Regression of murine lung tumors by the let-7 microRNA. Oncogene 2010; 29: 1580-7.10.1038/onc.2009.445284171319966857Search in Google Scholar

107. Kumar MS, Erkeland SJ, Pester RE, Chen CY, Ebert MS, Sharp PA, et al. Suppression of non-small cell lung tumor development by the let-7 micro- RNA family. Proc Natl Acad Sci USA 2008; 105: 3903-8.10.1073/pnas.0712321105226882618308936Search in Google Scholar

108. Ji Q, Hao X, Meng Y, Zhang M, DeSano J, Fan DM, et al. Restoration of tumor suppressor miR-34 inhibits human p53-mutant gastric cancer tumorspheres. BMC Cancer 2008; 8: 266.10.1186/1471-2407-8-266256497818803879Search in Google Scholar

109. Gutschner T, Baas M, Diederichs S. Noncoding RNA gene silencing through genomic integration of RNA destabilizing elements using zinc finger nucleases. Genome Res 2011; 21: 1944-54.10.1101/gr.122358.111320557821844124Search in Google Scholar

110. Borralho PM, Simoes AES, Gomes SE, Lima RT, Carvalho T, Ferreira DMS, et al. miR-143 Overexpression Impairs Growth of Human Colon Carcinoma Xenografts in Mice with Induction of Apoptosis and Inhibition of Proliferation. PLoS One 2011; 6: e23787.10.1371/journal.pone.0023787316200221901135Search in Google Scholar

111. Mizrahi A, Czerniak A, Levy T, Amiur S, Gallula J, Matouk I, et al. Development of targeted therapy for ovarian cancer mediated by a plasmid expressing diphtheria toxin under the control of H19 regulatory sequences. J Transl Med 2009; 7: 69. 10.1186/1479-5876-7-69273475619656414Search in Google Scholar

eISSN:
1581-3207
ISSN:
1318-2099
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Medicine, Clinical Medicine, Radiology, Internal Medicine, Haematology, Oncology