Acceso abierto

Enumeration of inversion sequences according to the outer and inner perimeter

 y   
31 dic 2024

Cite
Descargar portada

M. Archibald, A. Blecher and A. Knopfmacher, Parameters in inversion sequences, Math. Slovaca 73(3) (2023), 551–564.Search in Google Scholar

A. Blecher, C. Brennan and A. Knopfmacher, The inner site-perimeter of compositions, Quaest. Math. 43(1) (2020), 55–66.Search in Google Scholar

A. Blecher, C. Brennan, A. Knopfmacher and T. Mansour, The site-perimeter of words, Trans. Combin. 6(2) (2017), 37–48.Search in Google Scholar

A. Blecher, A. Knopfmacher and T. Mansour, Alphabetic points and records in inversion sequences, Discrete Math. Lett. 10 (2022), 85–90.Search in Google Scholar

M. Bousquet-Mélou and A. Rechnitzer, The site-perimeter of bargraphs, Adv. in Appl. Math. 31 (2003), 86–112.Search in Google Scholar

W. Cao, E. Y. Jin and Z. Lin, Enumeration of inversion sequences avoiding triples of relations, Discrete Appl. Math. 260 (2019), 86–97.Search in Google Scholar

S. Corteel, M. A. Martinez, C. D. Savage and M. Weselcouch, Patterns in inversion sequences I, Discrete Math. Theor. Comput. Sci. 18(2) (2016), Art. #2.Search in Google Scholar

D. Kim and Z. Lin, Refined restricted inversion sequences, Sém. Lothar. Combin. 78B (2017), Art. #52.Search in Google Scholar

Z. Lin, Restricted inversion sequences and enhanced 3-noncrossing partitions, European J. Combin. 70 (2018), 202–211.Search in Google Scholar

Z. Lin and and S. H. F. Yan, Vincular patterns in inversion sequences, Appl. Math. Comput. 364 (2020), Art. 124672.Search in Google Scholar

T. Mansour, Border and tangent cells in bargraphs, Discrete Math. Lett. 1 (2019), 26–29.Search in Google Scholar

T. Mansour, The perimeter and the site-perimeter of set partitions, Electron. J. Combin. 26 (2019), Art. P2.30.Search in Google Scholar

T. Mansour and A. Sh. Shabani, Enumerations on bargraphs, Discrete Math. Lett. 2 (2019), 65–94.Search in Google Scholar

T. Mansour and M. Shattuck, Pattern avoidance in inversion sequences, Pure Math. Appl. 25 (2015), 157–176.Search in Google Scholar

T. Mansour and M. Shattuck, Statistics on bargraphs of inversion sequences of permutations, Discrete Math. Lett. 4 (2020), 37–44.Search in Google Scholar

T. Mansour and M. Shattuck, Counting inversion sequences by parity successions and runs, Discrete Appl. Math. 330 (2023), 24–39.Search in Google Scholar

T. Mansour and M. Shattuck, Enumeration of smooth inversion sequences and proof of a recent related conjecture, J. Difference Equ. Appl. 29(3) (2023), 270–296.Search in Google Scholar

M. Martinez and C. Savage, Patterns in inversion sequences II: inversion sequences avoiding triples of relations, J. Integer Seq. 21 (2018), Art. 18.2.2.Search in Google Scholar

N. J. A. Sloane et al., The On-Line Encyclopedia of Integer Sequences, 2020. Available at https://oeis.org.Search in Google Scholar

R. P. Stanley, Enumerative Combinatorics, Volume I, Cambridge University Press, Cambridge, UK (1997).Search in Google Scholar

C. Yan and Z. Lin, Inversion sequences avoiding pairs of patterns, Discrete Math. Theor. Comput. Sci. 22(1) (2020), Art. 6539.Search in Google Scholar

S. H. F. Yan, Bijections for inversion sequences, ascent sequences and 3-nonnesting set partitions, Appl. Math. Comput. 325 (2018), 24–30.Search in Google Scholar