[Andrew, R. (1971). Exine pattern in the pollen of British species of Tilia. New Phytol., 70, 683–686.]Search in Google Scholar
[Ball, P. (2002). Natural strategies for the molecular engineer. Nanotechnology, 13, 15–28.]Search in Google Scholar
[Bargmann, B. O. R., Birnbaum, K. D. (2009). Positive fluorescent selection permits preside, rapid and in-depth overexpression analysis in plant protoplasts. Plant Physiol., 149, 1231–1239.]Search in Google Scholar
[Barnabás, B. (2003). Protocol for producing doubled haploid plants from anther culture of wheat (Triticum aestivum L.). In: Maluszymski M., Kasha, K.J., Forster, B. P., Szarejko I. (eds.). Doubled Haploid Production in Crop Plants. Kluwer Academic Publishers, Dordrecht, pp. 65–70.]Search in Google Scholar
[Bergmann, W., Neubert, P. (1976). Pflanzendiagnose und Pflanzenanalyse. Gustav Fisher Verlag, Jena. 711 S. (in German).]Search in Google Scholar
[Campos-Ramos, A., Aragon-Pina, A., Alastuey, A., Galindo-Estrada, I., Querol, X. (2011). Levels, compositions and source apportionment of rural background PM10 in western Mexico (state of Colima). Atmosph. Pollut. Res., 2, 409–417.]Search in Google Scholar
[Carter, A. D., Bonyadi, R., Gifford, M. L. (2013). The use of fluorescence-activated cell sorting in studying plant development and environmental responses. J. Dev. Biol., 57, 545–552.]Search in Google Scholar
[Cekstere, G. (2011). Vides faktoru ietekme uz Holandes liepu (Tilia x vulgaris) vitalitāti Rīgas ielu apstādījumos [Environmental factor influence on Commone lime (Tilia x vulgaris) vitality in street greenery of Rīga]. PhD thesis. Rīga: LU Akadēmiskais apgāds, p. 225 (in Latvian).]Search in Google Scholar
[Cekstere, G., Osvalde, A. (2013). A study of chemical characteristics of soil in relation to street trees status in Rīga (Latvia). Urban Forestry and Urban Greening, 12 (1), 69–78. ]Search in Google Scholar
[Cekstere, G., Osvalde, A., Elferts, D., Rose, C., Lucas, F., Voillenweider, P. (2020). Salt accumulation and effects within foliage of Tilia x vulgaris trees from the street greenery of Riga, Latvia. Sci. Total Environ., 747, 140921. https://doi.org/10.1016/j.scitotenv.2020.140921.]Search in Google Scholar
[Cekstere, G., Osvalde, A., Karlsons, A., Nollendorfs, V., Paegle, G. (2005). The effect of urban environment on the mineral nutrition status of street trees in Rīga, the problems and possible solution. Acta Universitatis Latviensis, Earth & Environment Sciences, 685, 7–20.]Search in Google Scholar
[Cekstere, G., Osvalde, A., Nikodemus, O. (2010). Influence of de-icing salt on K supply and street trees ecological status in Rīga, Latvia. In: Rauch, S., Morrison, G. M., Monzón, A. (eds.). Highway and Urban Environment, Aliance for Global Sustainability, Book Series 17, Proceedings of the 9th Highway and Urban Environment Symposium, Springer, pp. 337–346.]Search in Google Scholar
[Chambers, T. C., Godwin, H. (1971). Scanning electron microscopy of Tilia pollen. New Phytol., 70, 687–692.]Search in Google Scholar
[Civáň, P., Švec, M., Hauptvogel, P. (2011). On the coevolution of transposable elements and plant genomes. J. Bot., 2011, 893546. http://dx.doi.org/10.1155/2011/893546.]Search in Google Scholar
[Colvin, V. L. (2003). The potential environmental impact of engineered nanomaterials. Nat. Biotechnol., 10 (21), 1166–1170.]Search in Google Scholar
[Craul, P. J. (1999). Urban Soils. Applications and Practices. J. Wiley, New York. 366 pp.]Search in Google Scholar
[Dimkpa, C. O., McLean, J. E., Latta, D .E., Manangó, E., Britt, D. W., Johnson, W. P., Boyanov, M. I., Anderson, A. J. (2012). CuO and ZnO nanoparticles; phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J. Nanopart. Res., 14 (9), 1–15.]Search in Google Scholar
[Djaković, T., Jovanović, Z. (2003). The role of cell wall peroxidase in the inhibition of leaf and fruit growth. Bulg. J. Plant Physiol. Special Issue, 264–272.]Search in Google Scholar
[Dožel, J., Greilhuber, J., Suda, J. (2007). Flow cytometry with plants: An overview. In: Doležel, J., Greilhuber, J., Suda J. (eds.). Flow Cytometry with Plant Cells. Wiley- VCH Verlag GmbH&Co. KGaA, pp. 41–65. ]Search in Google Scholar
[Duan, J., Yu, Y., Yu, Y., Li, Y., Huang, P., Zhou, X., Peng, S., Sun, Z. (2014). Silica nanoparticles enhance autophagic activity, disturb endothelial cell homeostasis and impair angiogenesis. Particle Fibre Toxicol., 11 (50). http://www.particleandfibretoxicology.com/content/11/1/50.]Search in Google Scholar
[European Environment Agency (2014). Air quality in Europe – 2014. EEA Report No 5/2014, Publications Office of the European Union, 2014. 82 pp.]Search in Google Scholar
[Galbraith, D. W. (2010). Flow cytometry and fluorescence-activated cell sorting in plants: The past, present, and future. Biomédica, 30, 65–70.]Search in Google Scholar
[Hagen-Thorn, A., Callesen, I., Armolaitis, K., Nihlglrb, B. (2004). The impact of six European tree species on the chemistry of mineral topsoil in forest plantations on former agricultural land. For. Ecol. Manag., 195, 373–384.]Search in Google Scholar
[Hektors, K., Prinsen, E., De Coen, W., Jansen, M. A. K., Guisez, Y. (2007). Arabidopsis thaliana plants acclimated to low dose rates of ultraviolet B radiation show specific changes in morphology and gene expression in the absence of stress symptoms. New Phytol., 175, 255–270.]Search in Google Scholar
[Kalendar, R., Antonius, K., Smýkal, P., Schulman, A. H. (2010). iPBS: A universal method for DNA fingerprinting and retrotransposon isolation. Theor. Appl. Genet., 121, 1419–1430.]Search in Google Scholar
[Kalteh, M., Zarrin, T. A., Shahram, A., Maryam, M. A., Alireza, F. N. (2014). Effect of silica nanoparticles on basil (Ocimum basili-cum) under salinity stress. J. Chem. Health Risks, 4 (3), 49–55.]Search in Google Scholar
[Kan, A. T., Tomson, M. B. (1999). Ground water transport of hydrophobic organic compounds in the presence of dissolved organic matter. Environ. Toxicol. Chem., 9, 253–263.]Search in Google Scholar
[Karim, Z., Adnan, R., Ansari, M. S. (2012). Low concentration of silver nanoparticles not only enhances the activity of horseradish peroxidase but alter the structure also. PLoS ONE, 7 (7), e41422.]Search in Google Scholar
[Kasha, K. J., Simon, E., Oro, R., Shim, Y. S. (2003). Barley isolated microspore culture protocol. In: Maluszynski, M., Kasha, K. J., Forster, B. P., Szarejko, I. (eds.). Doubled Haploid Production in Crop Plants. Manual. Kluwer Acad. Publ., Dordrecht, Boston, London, pp. 43–47.]Search in Google Scholar
[Kimura, H. (2005). Histone dynamics in living cells revealed by photobleaching. DNA Repair (Amst.), 4, 939–950.]Search in Google Scholar
[Klaus, V. H., Kiehl, K. (2021). A conceptual framework for urban ecological restoration and rehabilitation. Basic Appl. Ecol., 52, 82–94. https://doi.org/10.1016/j.baae.2021.02.010.]Search in Google Scholar
[Kļaviņa, D., Grauda, D., Priede, A., Rashal, I. (2014). Habitat diversity and genetic variability of Cypripedium calceolus in Latvia. Mirek, Z., Nikel, A., Paul, W. (eds). Actions for Wild Plants. Committee on Nature Conservation. Polish Academy of Sciences, Kraków, pp. 91–97.]Search in Google Scholar
[Kokina, I., Sļedevskis, Ē., Gerbreders, V., Grauda, D., Jermaļonoka, M., Valaine, K., Gavarāne I., Pigiņka I., Filipovičs M., Rashal I. (2013). Reaction of flax (Linum usitatissimum L.) calli culture to supplement of medium by carbon nanoparticles. Proc. Latvian Acad. Sci. Section B, 66, 220–209.]Search in Google Scholar
[Kosiba, P. (2008). Variability of morphometric leaf traits in small-leaved linden (Tilia cordata Mill.) under the influence of air pollution. Acta Societatis Botanicorum Poloniae, 77 (2), 125–137.]Search in Google Scholar
[Kostina, E, Wulff, A, Julkunen-Tiitto, R. (2001). Growth, structure, stomatal responses and secondary metabolites of birch seedlings (Betula pendula) under elevated UV-B radiation in the field. Trees, 15, 483–491.]Search in Google Scholar
[Krūmiņš J. (2023). Iedzīvotāju skaits Latvijā [Number of inhabitants in Latvia]. National Encyclopaedia. https://enciklopedija.lv/skirklis/10754-iedz%C4%ABvot%C4%81ju-skaits-Latvij%C4%81 (accessed 25.09.2024).]Search in Google Scholar
[Kumar, P., Pirjola, L., Ketzel, M., Harrison, R. M. (2013). Nanoparticle emissions from 11 non-vehicle exhaust sources: A review. Atmosph. Environ., 67, 252–277. ]Search in Google Scholar
[Lewis M. (2011). Agarose gel electrophoresis (basic method). Biological Protocols. http://www.methodbook.net/dna/agarogel.html.]Search in Google Scholar
[Lin, D., Xing, B. (2007). Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ. Poll., 150, 243–250.]Search in Google Scholar
[Ma, X., Geisler-Lee, J., Deng, Y., Kolmakov, A. (2010). Interaction between engineered nananoparticles (ENPs) and plants. Phytotoxicity, uptake and accumulation. Sci. Total Environ., 408, 3053–3061.]Search in Google Scholar
[Martinez, M. M., Reif, R. D., Pappas, D. (2010). Early detection of apoptosis in living cells by fluorescence correlation spectroscopy. Anal. Bioanal. Chem., 396, 1177–1185.]Search in Google Scholar
[Matsunaga, T., Togo, H., Kikuchi, T., Tanaka, T. (2000). Production of luciferase-magnetic particle complex by recombinant Magnetospirillum sp. AMB-1. Biotechnol. Bioeng., 70, 704–709.]Search in Google Scholar
[Miller, G., Suzuki, N., Ciftci-Yilmaz, S., Mittler, R. (2010). Reactive oxygen species homeostasis and signalling during drought and salinity stress. Plant Cell Environ., 33, 453–467.]Search in Google Scholar
[Mittler, R., Vanderauwera, S., Gollery, M., Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends Plant Sci., 9, 490–498.]Search in Google Scholar
[Mizutani, T., Arai, K., Miyamoto, M., Kimura, Y. (2006). Application of silica-containing nanocomposite emulsion to wall paint: A new environmentally safe paint of high performance. Progr. Org. Coatings, 55, 276–283.]Search in Google Scholar
[Monica, R. C., Cremonini, R. (2009). Nanoparticles and higher plants. Caryologia, 62 (2), 161–165.]Search in Google Scholar
[Murashige, T., Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue culture. Plantarium, 15, 473–497.]Search in Google Scholar
[Nabais, C., Feritas, H., Hagemeyer, J. (1999). Dendroanalysis: A tool for biomonitoring environmental pollution. Sci. Total Environ., 232 (1–2), 33–37.]Search in Google Scholar
[Neumann, M, Gabel, D. (2002). Simple method for reduction of autofluorescence in fluorescence microscopy. J. Histochem. Cytochem., 50 (3), 437–439.]Search in Google Scholar
[Niemela, J. (2004). Environmental problems and policies in growing urban areas: A multidisciplinary approach. Boreal Environ. Res., 9 (6), 457–458.]Search in Google Scholar
[Niinemets, Ü., Kull, O., Tenhunen, J. D. (1999). Variability in leaf morphology and chemical composition as a function of canopy light environment in coexisting ceciduous trees. Int. J. Plant Sci., 160 (5), 837–848.]Search in Google Scholar
[Official statistics portal (2024). https://stat.gov.lv/en/search?Search=%22towns%22&DataSource=%22data%22 (accessed 25.09.2024).]Search in Google Scholar
[Osvalde, A. (2011). Optimization of plant mineral nutrition revisited: The role of plant rquirements, nutrient interactions, and soil properties in a fertilization management. Environ. Experi. Biol., 9, 1–8.]Search in Google Scholar
[Page, A. L., Miller, R. H., Keeney, D. R. (1982). Methods of Soil Analysis. 2nd edn. American Society of Agronomy, Madison, WI. 1159 pp.]Search in Google Scholar
[Peykarestan, B., Seify, M. (2012). UV irradiation effects on seed germination and growth, protein content, peroxidaseand protease activity in red bean. Int. Res. J. Appl. Basic Sci., 3 (1), 92–102. ]Search in Google Scholar
[Reijnders, L. (2012). Hazards of TiO2 and Amorphous SiO2 Nanoparticles. In: Toxic Effects of Nanomaterials. Kahan, H., A, Arif, I. A. (eds.). Bentham Science Publishers, pp. 85–96.]Search in Google Scholar
[Reijnders, L. (2009). The release of TiO2 and SiO2 nanoparticles from nanocomposites Polymer Degrad. Stabil., 94, 873–876.]Search in Google Scholar
[Rinkis, G. J., Ramane, H. K., Kunickaya, T. A. (1987). Metodi analiza pochv i rasteniy [Methods of soil and plant analysis]. Zinātne, Rīga (in Russian).]Search in Google Scholar
[Sander, H., Elliku, J., Läänelaid, A., Reisner, V., Reisner, U., Rohtla, M., Sestakov, M. (2003). Urban tress of Tallinn, Estonia. Proc. Estonian Acad. Sci., Biology, Ecology 52 (4), 437–452.]Search in Google Scholar
[Sergio, L. C. Ferreira, Marcos A. Bezerra, Adilson S. Santos, Walter N. L. dos Santos, Cleber G. Novaes, Olivia M. C. de Oliveira, Michael L. Oliveira, Rui L. Garcia (2018). Atomic absorption spectrometry: A multi element technique. Trends Anal. Chem., 100, 1–6. https://doi.org/10.1016/j.trac.2017.12.012.]Search in Google Scholar
[Sjöman, H., Östberg, J., Bühler, O. (2012). Diversity and distribution of the urban tree population in ten major Nordic cities. Urban Forestry and Urban Greening, 11 (1), 31-39. 39 http://dx.doi.org/10.1016/j.ufug.]Search in Google Scholar
[Smýkal, P., Bačova-Karteszova, N., Kalendar, R., Corander, J., Schulman, A. H., Pavelek, M. (2011). Genetic diversity of cultivated flax (Linum usitatissimum L.) germplasm assessed by retrotransposon-based markers. Theor. Appl. Genet., 122, 1385–1397.]Search in Google Scholar
[Stapleton, A. E. (1992). Ultraviolet radiation and plants: Burning questions. The Plant Cell, 4, 1353–1358.]Search in Google Scholar
[Tenche-Constantinescu, A.-M., Lalescu, D.V., Popescu, S., Sarac, I., Petrescu, I., Petolescu, C., Camen, D., Horablaga, A., Popescu, C. A., Berar, C., Onisan E. (2024). Exploring the genetic landscape of Tilia spp. with molecular and statistical tools. Horticulturae, 10, 596. https://doi.org/10.3390/horticulturae10060596.]Search in Google Scholar
[Van Hoecke, K., De Schamphelaere, K. A. C., Vander Meeren, P., Licas, S., Janssen, C. R. (2008). Ecotoxicity of silica nanoparticles to the green alga Pseudokirchneriella subcapitata: Importance of surface area. Environ. Toxicol. Chem., 27, 410–420.]Search in Google Scholar
[Vigneswaran, N., Koh, S., Gillenwater, A. (2009). Incidental detection of an occult oral malignancy with autofluorescence imaging: A case report. Head Neck Oncol., 1 (37), www.headandneckoncology.org/conten/1/1/37.]Search in Google Scholar
[Veliu, A., Syla, A. (2008). Air pollution with particulate matter and heavy metals of Kosova thermal power plant. J. Int. Environ. Appl. Sci., 3 (4), 280–287.]Search in Google Scholar
[Vukich, M., Schulman, A. H., Giordani, T., Natali, L., Kalendar, R., Cavallini, A. (2009). Genetic variability in sunflower (Helianthus annuus L.) and in the Helianthus genus as assessed by retrotransposon-based molecular markers. Theor. Appl. Genet., 119, 1027–1238.]Search in Google Scholar
[Wang, J., Pui, D. Y. H. (2011). Characterization, exposure measurement and control for nanoscale particles in workplaces and on the road. J. Phys. Conf. Series, 304, 012008, 1–14.]Search in Google Scholar
[Wang, S. Q., Balagula, Y., Osterwalder, U. (2010). Photoprotection: A review of the current and future technologies. Dermatol. Ther., 23 (1), 31–47.]Search in Google Scholar
[Wei, C, Zhang, Y, Guo, J, Han, B, Yang, X, Yuan, J. (2010). Effects of silica nanoparticles on growth and photosynthetic pigment contents of Scenedesmus obliquus. J. Environ. Sci. (China), 22 (1), 155–60. ]Search in Google Scholar
[Yeh, F. C., Yang, R. C., Boyle, T. B. J. (1999). POPGENE version 1.32, Microsoft Window-based free ware for population genetic analysis. Computer program and documentation distributed by University of Alberta and Centre for International Forestry Research, Alberta, Canada. http://www.ualberta.ca/;fyeh/index.htm.]Search in Google Scholar
[Yilmaz, S., Zengin, M. (2004). Monitoring environmental pollution in Erzurum by chemical analysis of Scott pine (Pinus sylvestris L.) needles. Environ. Int., 29, 1041–1047.]Search in Google Scholar
[You, M. K., Lim S.-H., Kim M.-J., Jeong Y. S., Lee M.-G., Ha S.-H. (2015). Improvement of the fluorescence intensity during a flow cytometric analysis for rice protoplasts by localization of a green fluorescent protein into chloroplasts. Int. J. Mol. Sci., 16, 788–804.]Search in Google Scholar
[Zajzon, N., Marton, E., Sipos, P., Kristaly, F., Nemeth, T., Kis-Kovacs, V., Tamás, G. Weiszburg, T. G. (2013). Integrated mineralogical and magnetic study of magnetic airborne particles from potential pollution sources in industrial-urban environment. Carpathian J. Earth Environ. Sci., 8 (1), 179–186.]Search in Google Scholar