Cite

Albergaria, A., Paredes, J., Sousa, B., Milanezi, F., Carneiro, V., Bastos, J., Costa, S., Vieira, D., Lopes, N., Lam, E. W., Lunet, N., Schmitt, F. (2009). Expression of FOXA1 and GATA-3 in breast cancer: The prognostic significance in hormone receptor-negative tumours. Breast Cancer Res., 11 (3), R40. DOI: 10.1186/bcr2327. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2716509/. Search in Google Scholar

Asano, Y., Kashiwagi, S., Goto, W., Tanaka, S., Morisaki, T., Takashima, T., Noda, S., Onoda, N., Ohsawa, M., Hirakawa, K., Ohira, M. (2017). Expression and clinical significance of androgen receptor in triple-negative breast cancer. Cancers, 9 (1), 4. DOI: 10.3390/cancers9010004. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5295775/. Search in Google Scholar

Bianchini, G., Balko, J. M., Mayer, I. A., Sanders, M. E., Gianni, L. (2016). Triple-negative breast cancer: Challenges and opportunities of a heterogeneous disease. Nat. Rev. Clin. Oncol., 13 (11), 674–690. https://doi.org/10.1038/nrclinonc.2016.66.10.1038/nrclinonc.2016.66546112227184417 Search in Google Scholar

Burstein, M. D., Tsimelzon, A., Poage, G. M., Covington, K. R., Contreras, A., Fuqua, S. A., Savage, M. I., Osborne, C. K., Hilsenbeck, S. G., Chang, J. C., Mills, G. B., Lau, C. C., Brown, P. H. (2015). Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin. Cancer Res., 21 (7), 1688–1698. DOI: 10.1158/1078-0432.CCR-14-0432. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4362882/. Search in Google Scholar

Chin, C. H., Chen, S. H., Wu, H. H., Ho, C. W., Ko, M. T., Lin, C. Y. (2014). cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol., 8 (Suppl 4), S11. https://doi.org/10.1186/1752-0509-8-S4-S11.10.1186/1752-0509-8-S4-S11429068725521941 Search in Google Scholar

Chen, J., Bardes, E., Aronow, B., Jegga, A. (2009). ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucl. Acids Res., 37, W305-11. DOI: 10.1093/nar/gkp427. https://www.researchgate.net/publication/26236961_ToppGene_Suite_for_gene_list_enrichment_analysis_and_candidate_gene_prioritization. Search in Google Scholar

Cimino-Mathews, A., Subhawong, A. P., Elwood, H., Warzecha, H. N., Sharma, R., Park, B. H., Taube, J. M., Illei, P. B., Argani, P. (2013). Neural crest transcription factor Sox10 is preferentially expressed in triple-negative and metaplastic breast carcinomas. Hum. Pathol., 44 (6), 959–965. DOI: 10.1016/j.humpath.2012.09.005. https://pubmed.ncbi.nlm.nih.gov/23260325/.10.1016/j.humpath.2012.09.005397817823260325 Search in Google Scholar

Collins, L. C., Cole, K. S., Marotti, J. D., Hu, R., Schnitt, S. J., Tamimi, R. M. (2011). Androgen receptor expression in breast cancer in relation to molecular phenotype: Results from the Nurses’ Health Study. Mod. Pathol., 24 (7), 924–931. https://www.nature.com/articles/modpathol201154#ethics. Search in Google Scholar

Dai, X., Cheng, H., Chen, X., Li, T., Zhang, J., Jin, G., Cai, D., Huang, Z. (2019). FOXA1 is prognostic of triple negative breast cancers by transcriptionally suppressing SOD2 and IL6. Int. J. Biol. Sci., 15 (5), 1030–1041. DOI: 10.7150/ijbs.31009. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6535797/. Search in Google Scholar

Dong, P., Yu, B., Pan, L., Tian, X., Liu, F. (2018). Identification of key genes and pathways in triple-negative breast cancer by integrated bioinformatics analysis. BioMed Res. Int., 2018, 2760918. DOI: org/10.1155/2018/2760918. https://www.hindawi.com/journals/bmri/2018/2760918/. Search in Google Scholar

Ferlay, J., Colombet, M., Soerjomataram, I., Mathers, C., Parkin, D. M., Piñeros, M., Znaor, A., Bray, F. (2019). Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer, 144 (8), 1941–1953. https://doi.org/10.1002/ijc.31937.10.1002/ijc.3193730350310 Search in Google Scholar

Gerratana, L., Basile, D., Buono, G., De Placido, S., Giuliano, M., Minichillo, S., Coinu, A., Martorana, F., De Santo, I., Del Mastro, L., De Laurentiis, M., Puglisi, F., Arpino, G. (2018). Androgen receptor in triple negative breast cancer: A potential target for the targetless subtype. Cancer Treat. Rev., 68, 102–110. https://doi.org/10.1016/j.ctrv.2018.06.005.10.1016/j.ctrv.2018.06.00529940524 Search in Google Scholar

Gucalp, A., Traina, T. A. (2010). Triple-negative breast cancer: Role of the androgen receptor. Cancer J. (Sudbury, Mass.), 16 (1), 62–65. DOI: 10.1097/PPO.0b013e3181ce4ae1. https://pubmed.ncbi.nlm.nih.gov/20164692/.20164692 Open DOISearch in Google Scholar

Guiu, S., Mollevi, C., Charon-Barra, C., Boissičre, F., Crapez, E., Chartron, E., Lamy, P. J., Gutowski, M., Bourgier, C., Romieu, G., Simony-Lafontaine, J., Jacot, W. (2018). Prognostic value of androgen receptor and FOXA1 co-expression in non-metastatic triple negative breast cancer and correlation with other biomarkers. Brit. J. Cancer, 119 (1), 76–79. DOI: 10.3390/cancers13040765. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7918092/.791809233673133 Open DOISearch in Google Scholar

Gupta, P. B., Kuperwasser, C. (2006). Contributions of estrogen to ER-negative breast tumor growth. J. Steroid Biochem. Mol. Biol., 102 (1–5), 71–78. DOI: 10.1016/j.jsbmb.2006.09.025. PMID: 17049443. https://www.sciencedirect.com/science/article/pii/S0960076006002706?via%3Dihub.17049443 Open DOISearch in Google Scholar

Hwang, K. T., Kim, J., Jung, J., Chang, J. H., Chai, Y. J., Oh, S. W., Oh, S., Kim, Y. A., Park, S. B., Hwang, K. R. (2019). Impact of breast cancer sub-types on prognosis of women with operable invasive breast cancer: A population-based study using SEER Database. Clin. Cancer Res., 25 (6), 1970–1979. https://doi.org/10.1158/1078-0432.CCR-18-2782.10.1158/1078-0432.CCR-18-278230559169 Search in Google Scholar

Haffty, B. G., Yang, Q., Reiss, M., Kearney, T., Higgins, S. A., Weidhaas, J., Harris, L., Hait, W., Toppmeyer, D. (2006). Locoregional relapse and distant metastasis in conservatively managed triple negative early-stage breast cancer. J. Clin. Oncol., 24 (36), 5652–5657. DOI: 10.1200/JCO.2006.06.5664. https://ascopubs.org/doi/10.1200/JCO.2006.06.5664?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed.17116942 Open DOISearch in Google Scholar

Ishibashi, Y., Ohtsu, H., Ikemura, M., Kikuchi, Y., Niwa, T., Nishioka, K., Uchida, Y., Miura, H., Aikou, S., Gunji, T., et al. (2017). Serum TFF1 and TFF3 but not TFF2 are higher in women with breast cancer than in women without breast cancer. Sci. Rep., 7 (1), 4846. DOI: 10.1038/s41598-017-05129-y. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5501858/.550185828687783 Open DOISearch in Google Scholar

Jamidi, S. K., Hu, J., Aphivatanasiri, C., Tsang, J. Y., Poon, I. K., Li, J. J., Chan, S. K., Cheung, S. Y., Tse, G. M. (2020). Sry-related high-mobility-group/HMG box 10 (SOX10) as a sensitive marker for triple-negative breast cancer. Histopathology, 77 (6), 936–948. https://doi.org/10.1111/his.14118.10.1111/his.1411832304249 Search in Google Scholar

Kesson, E. M., Allardice, G. M., George, W. D., Burns, H. J., Morrison, D. S. (2012). Effects of multidisciplinary team working on breast cancer survival: Retrospective, comparative, interventional cohort study of 13 722 women. Brit. Med. J. (Clin. Res. ed.), 344, e2718. https://doi.org/10.1136/bmj.e2718.10.1136/bmj.e2718333987522539013 Search in Google Scholar

Kim, S., Moon, B. I., Lim, W., Park, S., Cho, M. S., Sung, S. H. (2016). Expression patterns of GATA3 and the androgen receptor are strongly correlated in patients with triple-negative breast cancer. Hum. Pathol., 55, 190–195. https://doi.org/10.1016/j.humpath.2016.04.013. https://www.sciencedirect.com/science/article/abs/pii/S0046817716300624?via%3Dihub. Search in Google Scholar

Lehmann, B. D., Bauer, J. A., Chen, X., Sanders, M. E., Chakravarthy, A. B., Shyr, Y., Pietenpol, J. A. (2011). Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin. Investig., 121 (7), 2750–2767. DOI: 10.1172/JCI45014. https://www.jci.org/articles/view/45014.312743521633166 Open DOISearch in Google Scholar

Lehmann, B. D., Jovanović, B., Chen, X., Estrada, M. V., Johnson, K. N., Shyr, Y., Moses, H. L., Sanders, M. E., Pietenpol, J. A. (2016). Refinement of triple-negative breast cancer molecular subtypes: Implications for neoadjuvant chemotherapy selection. PloS One, 11 (6), e0157368. DOI: 10.1371/journal.pone.0157368. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4911051/.491105127310713 Open DOISearch in Google Scholar

Li, L., Huang, H., Zhu, M., Wu, J. (2021). Identification of hub genes and pathways of triple negative breast cancer by expression profiles analysis. Cancer Manag. Res., 13, 2095–2104. DOI: 10.2147/CMAR.S295951. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7935333/.793533333688252 Open DOISearch in Google Scholar

Liu, Z., Chen, S. (2010). ER regulates an evolutionarily conserved apoptosis pathway. Biochem. Biophys. Res. Comm., 400 (1), 34–38. DOI: 10.1016/j.bbrc.2010.07.132. https://www.sciencedirect.com/science/article/abs/pii/S0006291X10014658?via%3Dihub.20691160 Open DOISearch in Google Scholar

Madsen, J., Nielsen, O., Torn¸e, I., Thim, L., Holmskov, U. (2007). Tissue localization of human trefoil factors 1, 2, and 3. J. Histochem. Cytochem., 55 (5), 505–513. DOI: 10.1369/jhc.6A7100.2007. https://journals.sagepub.com/doi/10.1369/jhc.6A7100.2007?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed.17242463 Open DOISearch in Google Scholar

Malorni, L., Shetty, P. B., De Angelis, C., Hilsenbeck, S., Rimawi, M. F., Elledge, R., Osborne, C. K., De Placido, S., Arpino, G. (2012). Clinical and biologic features of triple-negative breast cancers in a large cohort of patients with long-term follow-up. Breast Cancer Res. Treat., 136 (3), 795–804. DOI: 10.1007/s10549-012-2315-y. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3513514/.351351423124476 Open DOISearch in Google Scholar

Masuda, H., Baggerly, K. A., Wang, Y., Zhang, Y., Gonzalez-Angulo, A. M., Meric-Bernstam, F., Valero, V., Lehmann, B. D., Pietenpol, J. A., Hortobagyi, G. N., Symmans, W. F., Ueno, N. T. (2013). Differential response to neoadjuvant chemotherapy among 7 triple-negative breast cancer molecular subtypes. Clin. Cancer Res., 19 (19), 5533–5540. DOI: 10.1158/1078-0432.CCR-13-0799. https://clincancerres.aacrjournals.org/content/19/19/5533.381359723948975 Open DOISearch in Google Scholar

Mehra, R., Varambally, S., Ding, L., Shen, R., Sabel, M. S., Ghosh, D., Chinnaiyan, A. M., Kleer, C. G. (2005). Identification of GATA3 as a breast cancer prognostic marker by global gene expression meta-analysis. Cancer Res., 65 (24), 11259–11264. DOI: 10.1158/0008-5472.CAN-05-2495. https://cancerres.aacrjournals.org/content/65/24/11259.long.16357129 Open DOISearch in Google Scholar

Mrklić, I., Pogorelić, Z., Capkun, V., Tomić, S. (2013). Expression of androgen receptors in triple negative breast carcinomas. Acta Histochem., 115 (4), 344–348. DOI: 10.1016/j.acthis.2012.09.006. https://www.sciencedirect.com/science/article/abs/pii/S0065128112001158?via%3Dihub.23031358 Open DOISearch in Google Scholar

Nallanthighal, S., Heiserman, J. P., Cheon, D. J. (2019). The role of the extracellular matrix in cancer stemness. Frontiers Cell Devel. Biol., 7, 86. https://doi.org/10.3389/fcell.2019.00086.10.3389/fcell.2019.00086662440931334229 Search in Google Scholar

Reis-Filho, J. S., Pusztai, L. (2011). Gene expression profiling in breast cancer: Classification, prognostication, and prediction. Lancet, 378, 1812–1823. DOI: 10.1016/S0140-6736(11)61539-0. https://pubmed.ncbi.nlm.nih.gov/22098854/.22098854 Open DOISearch in Google Scholar

Sartorius, C. A., Hanna, C. T., Gril, B., Cruz, H., Serkova, N. J., Huber, K. M., Kabos, P., Schedin, T. B., Borges, V. F., Steeg, P. S., Cittelly, D. M. (2016). Estrogen promotes the brain metastatic colonization of triple negative breast cancer cells via an astrocyte-mediated paracrine mechanism. Oncogene, 35 (22), 2881–2892. DOI: 10.1038/onc.2015.353. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4809801/.480980126411365 Open DOISearch in Google Scholar

Shaoxian, T., Baohua, Y., Xiaoli, X., Yufan, C., Xiaoyu, T., Hongfen, L., Rui, B., Xiangjie, S., Ruohong, S., Wentao, Y. (2017). Characterisation of GATA3 expression in invasive breast cancer: Differences in histological subtypes and immunohistochemically defined molecular subtypes. J. Clin. Pathol., 70 (11), 926–934. https://jcp.bmj.com/content/70/11/926.long.10.1136/jclinpath-2016-20413728428285 Search in Google Scholar

Sørlie, T., Perou, C. M., Tibshirani, R., Aas, T., Geisler, S., Johnsen, H., Hastie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S., et al. (2001). Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. USA, 98 (19), 10869–10874. DOI: 10.1073/pnas.191367098. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC58566/.5856611553815 Open DOISearch in Google Scholar

Yi, J., Ren, L., Li, D., Wu, J., Li, W., Du, G., Wang, J. (2020). Trefoil factor 1 (TFF1) is a potential prognostic biomarker with functional significance in breast cancers. Biomed. Pharmacother., 124, 109827. DOI: 10.1016/j.biopha.2020.109827. https://www.sciencedirect.com/science/article/pii/S0753332220300172.31986408 Open DOISearch in Google Scholar

eISSN:
2255-890X
Idioma:
Inglés
Calendario de la edición:
6 veces al año
Temas de la revista:
General Interest, Mathematics, General Mathematics