Cite

Albert, R. (1975). Salt regulation in halophytes. Oecologia, 21, 57–71.10.1007/BF0034589328308604Search in Google Scholar

Anjum, N. A., Duarte, B., Caēador, I., Sleimi, N., Duarte, A. C., Pereira, E. (2016). Biophysical and biochemical markers of metal/metalloid impacts in salt marsh halophytes and their implications. Front. Environ. Sci.,4, 24.10.3389/fenvs.2016.00024Search in Google Scholar

Anjum, N. A., Singh, H. P., Khan, M. I. R., Masood, A., Per, T. S., Negi, A., Batish, D. R., Khan, N. A., Duarte, A. C., Pereira, E., Ahmad, I. (2015). Too much is bad — an appraisal of phytotoxicity of elevated plant beneficial heavy metal ions. Environ. Sci. Pollut. Res., 22, 3361–3382.10.1007/s11356-014-3849-925408077Search in Google Scholar

Baker, A. J. M., Brooks, R. R. (1989). Terrestrial higher plants which hyperaccumulate metallic elements — a review of their distribution, ecology and phytochemistry. Biorecovery, 1, 81–126.Search in Google Scholar

Baker, N. R. (2006). A possible role for photosystem II in environmental perturbations of photosynthesis. Physiol. Plant., 81, 563–570.10.1111/j.1399-3054.1991.tb05101.xSearch in Google Scholar

Blaylock, M. J., Huang, J. W. (2000). Phytoextraction of metals. In: Raskin, I., Ensley, B. D. (eds.). Phytoremediation of Toxic Metals — Using Plants to Clean-up the Environment. Wiley, New York, pp. 53–70.Search in Google Scholar

Bonanno, G., Vymazal, J., Cirelli, G. L. (2018). Translocation, accumulation and bioindication of trace elements in wetland plants. Sci. Total Environ., 631/632, 252–261.10.1016/j.scitotenv.2018.03.03929525704Search in Google Scholar

Bothe, H., Sùomka, A. (2017). Divergent biology of facultative heavy metal plants. J. Plant Physiol., 219, 45–61.10.1016/j.jplph.2017.08.01429028613Search in Google Scholar

Boyd, R. S. (2004). Ecology of metal hyperaccumulation. New Phytol., 162, 563–567.10.1111/j.1469-8137.2004.01079.x33873764Search in Google Scholar

Broadhurst, C. L., Chaney, R. L., Davis, A. P., Cox, A., Kumar, K,, Reeves, R. D., Green, C. E. (2015). Growth and cadmium phytoextraction by Swiss chard, maize, rice, Noccaea caerulescens, and Alyssum murale in pH adjusted biosolids amended soils. Int. J. Phytoremed., 17, 25–39.10.1080/15226514.2013.82801525174422Search in Google Scholar

Broadley, M. R., White, P. J., Hammond, J. P., Zelko, I., Lux, A. (2007). Zinc in plants. New Phytol., 173, 677–702.10.1111/j.1469-8137.2007.01996.x17286818Search in Google Scholar

Buscaroli, A. (2017). An overview of indexes to evaluate terrestrial plants for phytoremediation purposes (Review). Ecol. Indic., 82, 367–380.10.1016/j.ecolind.2017.07.003Search in Google Scholar

Capra, G. F., Coppola, E., Odierna, P., Grilli, E., Vacca, S., Buondonno, A. (2014). Occurrence and distribution of key potentially toxic elements (PTEs) in agricultural soils: A paradigmatic case study in an area affected by illegal landfills. J. Geochem. Explor., 14, 169–180.10.1016/j.gexplo.2014.06.007Search in Google Scholar

Clairmont, K. B., Hagar, W. G., Davis, E. A. (1986). Manganese toxicity to chlorophyll synthesis in tobacco callus. Plant. Physiol., 80, 291–29310.1104/pp.80.1.291Search in Google Scholar

Elamin, O. M., Wilcox, G. E. (1986). Effect of magnesium and manganese nutrition on muskmelon growth and manganese toxicity. J. Amer. Soc. Hortic. Sci., 111, 582–587.10.21273/JASHS.111.4.582Search in Google Scholar

Gao, W., Du, Y., Gao, S., Ingels, J., Wang, D. (2016). Heavy metal accumulation reflecting natural sedimentary processes and anthropogenic activities in two contrasting coastal wetland ecosystems, eastern China. J. Soils Sedim., 16, 1093–1108.10.1007/s11368-015-1314-0Search in Google Scholar

Guala, S. D., Vega, F. A., Covelo, E. F. (2011). Development of a model to select plants with optimum metal phytoextraction potential. Environ. Sci. Pollut. Res., 18, 997–1003.10.1007/s11356-011-0456-x21301976Search in Google Scholar

Gupta, N., Ram, H., Kumar, G. (2016). Mechanism of Zn absorbtion in plants: Uptake, transport, translocation and accumulation. Rev. Environ. Sci. Biotechnol., 15, 89–109.10.1007/s11157-016-9390-1Search in Google Scholar

Hacisalihoglu, G., Kochian, L. V. (2003). How do some plants tolerate low levels of soil Zn? Mechanisms of zinc efficency in crop plants. New Phytol., 159, 341–350.10.1046/j.1469-8137.2003.00826.x33873363Search in Google Scholar

Hamed, K. B., Ellouzi, H., Talbi, O. Z., Hessini, K., Slama, I., Ghnaya, T., Bosch, S. M., Savoure, A., Abdelly, C. (2013). Physiological response of halophytes to multiple stresses. Funct. Plant Biol., 40, 883–896.10.1071/FP1307432481158Search in Google Scholar

Han, R., Quinet, M., André, E., van Elteren, J. T., Destrebecq, F., Vogel-Mikuš, K., Cui, G., Debeljak, M., Lefčvre, I., Lutts, S. (2013). Accumulation and distribution of Zn in the shoots and reproductive structures of the halophyte plant species Kosteletzkya virginica as a function of salinity. Planta238, 441–457.10.1007/s00425-013-1903-323728368Search in Google Scholar

Jain, R., Srivastava, S., Solomon, S., Shrivastava, A. K., Chandra, A. (2010). Impact of excess zinc on growth parameters, cell division, nutrient accumulation, photosynthetic pigments and oxidative stress of sugarcane (Saccharum spp.). Acta Physiol. Plant., 32, 979–986.10.1007/s11738-010-0487-9Search in Google Scholar

Javed, M. T., Stoltz, E., Lindberg, S., Greger, M. (2013). Changes in pH and organic acids in mucilage of Eriophorum angustifolium roots after exposure to elevated concentrations of toxic elements. Environ. Sci. Pollut. Res., 20, 1876–1880.10.1007/s11356-012-1413-z23274805Search in Google Scholar

Jin, X. F., Yang, X. E., Islam, E., Liu, D., Mahmood, Q., Li, H., Li, J. (2008). Ultrastructural changes, zinc hyperaccumulation and its relation with anti-oxidants in two ecotypes of Sedum alfredii Hance. Plant Physiol. Biochem. 46, 997–1006.10.1016/j.plaphy.2008.06.01218693116Search in Google Scholar

Kalaji, H. M., Račková, L., Paganová, V., Swoczyna, T., Rusinowski, S., Sitko, K. (2018). Can chlorophyll-a fluorescence parameters be used as bio-indicators to distinguish between drought and salinity stress in Tilia cordata Mill? Environ. Exp. Bot., 152, 149–157.10.1016/j.envexpbot.2017.11.001Search in Google Scholar

Kan, X., Ren, J., Chen, T., Cui, M., Li, C., Zhou, R., Zhang, Y., Liu, H., Dexiang, D., Yin, Z. (2017). Effects of salinity on photosynthesis in maize probed by prompt fluorescence, delayed fluorescence and P700 signals. Environ. Exp. Bot.,140, 56–64.10.1016/j.envexpbot.2017.05.019Search in Google Scholar

Küpper, H., Zhao, F. J., McGrath, S. P. (1999). Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiol., 119, 305–311.10.1104/pp.119.1.305Search in Google Scholar

Li, Q., Chen, L.-S., Jiang, H.-X., Tang, N., Yang, L.-T., Lin, Z.-H., Li, Y., Yang, G.-H. (2010). Effects of manganese-excess on CO2 assimilation, ribulose-1,5-bisphosphate carboxylase/oxygenase, carbohydrates and photosynthetic electron transport of leaves, and antioxidant systems of leaves and roots in Citrus grandis seedlings. BMC Plant Biol.,10, 42.10.1186/1471-2229-10-42Search in Google Scholar

Li, T.-Q., Yang, Z. E., Yang, J.-Y., He, Z.-L. (2006). Zn accumulation and subcellular distribution in the Zn hyperaccumulator Sedum alfredii Hance. Pedosphere, 16, 616–623.10.1016/S1002-0160(06)60095-7Search in Google Scholar

Liang, H. M., Lin, T. H., Chiou, J. M., Yeh, K. C. (2009). Model evaluation of the phytoextraction potential of heavy metal hyperaccumulators and non-hyperaccumulators. Environ. Pollut.,157, 1945–1952.10.1016/j.envpol.2008.11.05219268408Search in Google Scholar

Liang, L., Liu, W., Sun, Y., Huo, X., Li, S., Zhou, Q. (2017). Phytoremediation of heavy metal contaminated saline soils using halophytes: Current progress and future perspectives. Environ. Res.,25, 269–281.10.1139/er-2016-0063Search in Google Scholar

Liu, J., Shang, W., Zhang, Zhu, Y., Yu, K. (2014). Mn accumulation and tolerance in Celosia argentea Linn.: A new Mn-hyperaccumulating plant species. J. Hazard. Mater., 267, 136–141.10.1016/j.jhazmat.2013.12.05124444455Search in Google Scholar

Liu, P., Tang, X., Gong, C., Xu, G. D. (2010). Manganese tolerance and accumulation in six Mn hyperaccumulators or accumulators. Plant Soil, 335, 285–395.10.1007/s11104-010-0427-xSearch in Google Scholar

Loneragan, J. F. (1988). Distribution and movement of manganese in plants. In: Graham, R. D., Hannam, R. J., Uren, N. C. (eds.). Manganese in Soils and Plants. Developments in Plant and Soil Sciences, Vol 33. Springer, Dordrecht, pp. 113–124.10.1007/978-94-009-2817-6_9Search in Google Scholar

Longnecker, N. E., Robson, A. D. (1993). Distribution and transport of zinc in plants. In: Robson, A. D. (ed.). Zinc in Soils and Plants. Developments in Plant and Soil Sciences, Vol 55. Springer, Dordrecht, pp. 79–91.10.1007/978-94-011-0878-2_6Search in Google Scholar

Lutts, S., Levčvre, I. (2015). How can we take advantage of halophyte properties to cope with heavy metal toxicity in salt-affected areas. Ann. Bot., 115, 509–528.10.1093/aob/mcu264433261425672360Search in Google Scholar

Masarovičová, E., Králová, K., Kummerová, M. (2010). Principles of classification of medicinal plants as hyperaccumulators or excluders. Acta Physiol. Plant., 32, 823–829.10.1007/s11738-010-0474-1Search in Google Scholar

Mateos-Naranjo, E., Redondo-Gómez, S., Cambrollé, J., Luque, T., Fugeroa, M. E. (2008). Growth and photosynthetic responses to zinc stress of an invasive cordgrass Spartina densiflora. Plant Biol.,10, 754–762.10.1111/j.1438-8677.2008.00098.x18950433Search in Google Scholar

Mitchell, R. G., Spliethoff, H. M., Ribaudo, L. N., Lopp, D. M., Shayler, H. A., Marquez-Bravo, L. G., Lambert, V. T., Ferenz, G. S., Russell-Anelli, J. M., Stone, E. B., McBride, M. B. (2014). Lead (Pb) and other metals in New York City community garden soils: Factors influencing contaminant distributions. Environ. Pollut., 187, 162–169.10.1016/j.envpol.2014.01.007398394924502997Search in Google Scholar

Moray, C., Goolsbay, E. W., Bromham, L. (2016). The phylogenetic association between salt tolerance and heavy metal hyperaccumulation in Angiosperms. Evol. Biol., 43, 119–130.10.1007/s11692-015-9355-2Search in Google Scholar

Naidu, R., Oliver, D., McConnell, S. (2003). Heavy metal phytotoxicity in soils. In: Proceedings of the Fifth National Workshop on the Assessment of Site Contamination. Environment Protection & Heritage Council, Adelaide, pp. 235–241.Search in Google Scholar

Osvalde, A. (2011). Optimization of plant mineral nutrition revisited: The roles of plant requirements, nutrient interactions, and soil properties in fertilization management. Environ. Exp. Biol., 9, 1–8.Search in Google Scholar

Peng, D., Shafi, M., Wang, Y., Li, S., Yan, W., Chen, J., Ye, Z., Liu, D. (2015). Effect of Zn stresses on physiology, growth, Zn accumulation, and chlorophyll of Phyllostachys pubescens. Environ. Sci. Pollut. Res., 22, 14983–14992.10.1007/s11356-015-4692-326002363Search in Google Scholar

Pinto, E., Aguiar, A. R. M., Ferreura I. M. P. L. V. O. (2014). Influence of soil chemistry and plant physiology in the phytoremediation of Cu, Man, and Zn. Crit. Rev. Plant Sci., 33, 351–373.10.1080/07352689.2014.885729Search in Google Scholar

Rascio, N., Navari-Izzo, F. (2011). Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Sci.,180, 169–181.10.1016/j.plantsci.2010.08.01621421358Search in Google Scholar

Reeves, R. D., van der Ent, A., Baker, A. J. M. (2018). Global distribution and ecology of hyperaccumulator plants. In: van der Ent, A., Echevarria, G., Baker, A., Morel, J. (eds.). Agromining: Farming for Metals. Mineral Resource Reviews. Springer International Publishing, Cham, pp. 75–92.10.1007/978-3-319-61899-9_5Search in Google Scholar

Reeves, R. D., Baker, A. J. M., Jaffré, T., Erskine, P. D., Echevarria, G., van der Ent, A. (2017). A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytol., 218, 407–411.10.1111/nph.1490729139134Search in Google Scholar

Reichman, S. (2002). The Responses of Plant to Metal Ttoxicity: A Review Focusing on Copper, Manganese and Zinc. Australian Minerals & Energy Environment Foundation, Melbourne. 54 pp.Search in Google Scholar

Ren, F., Liu, T., Liu, H., Hu, B. (1993). Influence of zinc on the growth, distribution of elements, and metabolism of one-year old American ginseng plants. J. Plant Nutr., 16, 393–405.10.1080/01904169309364539Search in Google Scholar

Samsone, I., Ievinsh, G. (2018). Different plant species accumulate various concentration of Na+ in a sea-affected coastal wetland during a vegetation season. Environ. Exp. Biol., 16, 117–127.10.22364/eeb.16.11Search in Google Scholar

Santos, E. F., Santini, J. M. K., Paixćo, A. P., Jśnior, E. F., Lavres, J., Campos, M., dos Reis, A. R. (2017). Physiological highlights of manganese toxicity symptoms in soybean plants: Mn toxicity responses. Plant Physiol. Biochem., 113, 6–19.10.1016/j.plaphy.2017.01.02228157580Search in Google Scholar

Sghaier, D. B., Duarte, B., Bankaji, I., Caēador, I., Sleimi, N. (2015). Growth, chlorophyll fluorescence and mineral nutrition in the halophyte Tamarix gallica cultivated in combined stress conditions: Arsenic and NaCl. J. Photochem. Photobiol. B Biol.,149, 204–214.10.1016/j.jphotobiol.2015.06.00326093232Search in Google Scholar

Shen, Z. G., Zhao, F. J., McGrath, S. P. (1997). Uptake and transport of zinc in the hyperaccumulator Thlaspi caerulescens and the non-hyper-accumulator Thlaspi ochroleucum. Plant Cell Environ., 20, 898–906.10.1046/j.1365-3040.1997.d01-134.xSearch in Google Scholar

Sruthi, P., Shackira, A. M., Puthur, J. T. (2017). Heavy metal detoxification mechanisms in halophytes: An overview. Wetlands Ecol. Manag., 25, 129–148.10.1007/s11273-016-9513-zSearch in Google Scholar

Strasser, R. J., Srivastava, A., Tsimilli-Michael, M. (2000). The fluorescence transient as a tool to characterise and screen photosynthetic samples. In: Yunus, M., Pathre, U., Mohanty, P. (eds.). Probing Photosynthesis: Mechanisms, Regulation and Adaptation. Taylor & Francis, London, pp. 445–483Search in Google Scholar

Tang, S., Fang, Y. (2012). Copper accumulation by Polygonum micro-cephalum D. Don and Rumex hastatus D. Don from copper mine spoils in Yunnan Province, P. R. China. Environ. Geol., 40, 902–907.10.1007/s002540100256Search in Google Scholar

Tang, Y.-T., Qiu, R.-L., Zeng, X-.W., Ying, R.-R., Yu, F.-M., Zhou, X.-Y. (2009). Lead, zinc, cadmium hyperaccumulation and growth stimulation in Arabis paniculata Franch. Environ. Exp. Bot., 66, 126–134.10.1016/j.envexpbot.2008.12.016Search in Google Scholar

Van Oosten, M. J., Maggio, A. (2015). Functional biology of halophytes in the phytoremediation of heavy metal contaminated soils. Environ. Exp. Bot., 111, 135–146.10.1016/j.envexpbot.2014.11.010Search in Google Scholar

Visioli, G., Marmiroli, N. (2013). The proteomics of heavy metal hyperaccumulation in plants. J. Proteom.,79, 133–145.10.1016/j.jprot.2012.12.00623268120Search in Google Scholar

Vondráčková, S., Hejcman, M., Száková, J., Müllerová, V., Tlustoš, P. (2014). Soil chemical properties affect the concentration of elements (N, P, K, Ca, Mg, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) and their distribution between organs of Rumex obtusifolius. Plant Soil, 379, 231–245.10.1007/s11104-014-2058-0Search in Google Scholar

Vondráčková, S., Száková, J., Drábek, O., Tejnecký, V., Hejcman, M., Müllerová, V., Tlustoš, P. (2015). Aluminium uptake and translocation in Al hyperaccumulator Rumex obtusifolius is affected by low-molecular weight organic acids content and soil pH. PLOS One, 10, e0123351.10.1371/journal.pone.0123351440010925880431Search in Google Scholar

Wang, A. S., Angle, J. S., Rufus, L. C., Delorme, T. A., Reeves, R. D. (2006). Soil pH effects on uptake of Cd and Zn by Thlaspi caerulencens. Plant Soil, 281, 325–337.10.1007/s11104-005-4642-9Search in Google Scholar

Wang, C., Zhang, S. H., Wang, P. F., Hou, J., Zhang, W. J., Li, W., Lin, Z. P. (2009). The effect of excess Zn on mineral nutrition and antioxidative response in rapeseed seedlings. Chemosphere, 75, 1468–1476.10.1016/j.chemosphere.2009.02.03319328518Search in Google Scholar

Xue, S. G., Chen, Y. X., Reeves, R. D., Baker, A. J. M., Lin, Q., Fernando, D. R. (2004). Manganese uptake and accumulation by the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaceae). Environ. Pollut., 131, 393–399.10.1016/j.envpol.2004.03.01115261402Search in Google Scholar

Yang, J., Ye, Z. (2009). Metal accumulation and tolerance in wetland plants. Front. Biol. China, 4, 282–288.10.1007/s11515-009-0024-7Search in Google Scholar

Yang, W., Li, H., Zhang, T., Sen, L., Ni, W. (2014). Classification and identification of metal-accumulating plant species by cluster analysis. Environ. Sci. Pollut. Res., 21, 10626–10637.10.1007/s11356-014-3102-624888623Search in Google Scholar

Ye, M., Liao, B., Li, J. T., Mengoni, A., Hu, M., Luo, W. C., Shu, W. S. (2012). Contrasting patterns of genetic divergence in two sympatric pseudo-metallophytes: Rumex acetosa L. and Commelina communis L. BMC Evol. Biol., 12, 84.10.1186/1471-2148-12-84Search in Google Scholar

Zhuang, P., Wang, Q. W., Wang, H. B., Shu, W. S. (2007). Phytoextraction of heavy metals by eight plant species in field. Water Air Soil Pollut., 184, 235–242.10.1007/s11270-007-9412-2Search in Google Scholar

eISSN:
2255-890X
Idioma:
Inglés
Calendario de la edición:
6 veces al año
Temas de la revista:
General Interest, Mathematics, General Mathematics