Acceso abierto

Design and experiment of a Long Range Autonomous Underwater Vehicle for Ocean Acoustic Data Observation

, , , ,  y   
05 mar 2025

Cite
Descargar portada

Venkatesan R, Tandon A, D’Asaro E, Atmanand MA. Observing the oceans in real time. Springer International Publishing, 2018. https://doi.org/10.1007/978-3-319-66493-4_1. Search in Google Scholar

Jensen FB, Kuperman WA, Porter MB, Schmidt H. Computational ocean acoustics. Springer New York; 2011. https://doi.org/10.1007/978-1-4419-8678-8. Search in Google Scholar

Dhanak MR, Xiros NI. Eds., Springer handbook of ocean engineering. Springer Cham; 2016. https://doi.org/10.1007/978-3-319-16649-0. Search in Google Scholar

Rogers EO, JG G, Smith WS, Denny GF, Farley PJ. Underwater acoustic glider. IEEE International Geoscience and Remote Sensing Symposium, vol.3, Sep. 2004, pp. 2241–2244. https://doi.org/10.1109/IGARSS.2004.1370808. Search in Google Scholar

Griffiths G. Ed., Technology and applications of autonomous underwater vehicles. CRC Press; 2002. https://doi.org/10.1201/9780203522301. Search in Google Scholar

Hobson BW, Bellingham JG, Kieft B, McEwen R, Godin M, Zhang Y. Tethys-class long range AUVs - extending the endurance of propeller-driven cruising AUVs from days to weeks. IEEE/OES Autonomous Underwater Vehicles (AUV), Southampton, United Kingdom: IEEE, Sep. 2012, pp. 1–8. https://doi.org/10.1109/AUV.2012.6380735. Search in Google Scholar

Roper DT, Phillips AB, Harris CA, Salavasidis G, Pebody M, Templeton R. Autosub long range 1500: An ultra-endurance AUV with 6000 km range, OCEANS 2017, Aberdeen, United Kingdom: IEEE, Jun. 2017, pp. 1–5. https://doi.org/10.1109/OCEANSE.2017.8084928. Search in Google Scholar

Furlong ME, Paxton D, Stevenson P, Pebody M, McPhail SD, Perrett J. Autosub long range: A long range deep diving AUV for ocean monitoring, 2012 IEEE/OES Autonomous Underwater Vehicles (AUV), Southampton, United Kingdom: IEEE, Sep. 2012, pp. 1–7. https://doi.org/10.1109/AUV.2012.6380737. Search in Google Scholar

Liu T, Jiang Z, Li S, Gu H. Explorer1000: A long endurance AUV with variable ballast systems, 2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO), Kobe: IEEE, May 2018, pp. 1–6. https://doi.org/10.1109/OCEANSKOBE.2018.8559249. Search in Google Scholar

Zimmerman R, D’Spain GL, Chadwell CD. Decreasing the radiated acoustic and vibration noise of a mid-size AUV. IEEE Journal of Oceanic Engineering, vol. 30, no. 1, Jan. 2005, pp. 179–187. https://doi.org/10.1109/JOE.2004.836996. Search in Google Scholar

Grund M, Freitag L, Preisig J, Ball K. The PLUSNet underwater communications system: Acoustic telemetry for undersea surveillance. OCEANS 2006, Boston, MA, USA: IEEE, Sep. 2006, pp. 1–5. https://doi.org/10.1109/OCEANS.2006.307036. Search in Google Scholar

Eiler JH, Grothues TM, Dobarro JA, Masuda MM. Comparing autonomous underwater vehicle (AUV) and vessel-based tracking performance for locating acoustically tagged fish. Marine Fisheries Review, vol. 75, no. 4, pp. 27–42, Feb. 2014. https://doi.org/10.7755/MFR.75.4.2. Search in Google Scholar

Nielsen PL, Muzi L, Siderius M. Seabed characterisation from ambient noise using short arrays and autonomous vehicles. IEEE Journal of Oceanic Engineering, vol. 42, no. 4, pp. 1094–1101, Oct. 2017. https://doi.org/10.1109/JOE.2017.2712338. Search in Google Scholar

Premus V, Abbot P, Gedney C, Christman R, Helfrick M, Campell R, Douglas K. IRAP: An integrated, real-time, autonomous passive acoustic monitoring system for beaked whale detection, localisation, and tracking. Journal of the Acoustical Society of America, vol. 140, no. 4, pp. 3181–3181, 2016. https://doi.org/10.1121/1.4969998 Search in Google Scholar

Terracciano DS, Costanzi R, Manzari V, Stifani M, Caiti A. Passive bearing estimation using a 2-D acoustic vector sensor mounted on a hybrid autonomous underwater vehicle. IEEE Journal of Oceanic Engineering, vol. 47, no. 3, pp. 799–814, Jul. 2022. https://doi.org/10.1109/JOE.2021.3132647. Search in Google Scholar

Yang S, Shang X, Sun T, Wang X, Zhao H, Fa S, Wang Y. A new dead reckoning method for HAUVs assisted by a dynamic model with ocean current information. Ocean Engineering, vol. 295, p. 116847, 2024. https://doi.org/10.1016/j.oceaneng.2024.116847 Search in Google Scholar

Silvia MT, Richards RT. A theoretical and experimental investigation of low-frequency acoustic vector sensors. In Oceans ’02 MTS/IEEE, Biloxi, MI, USA: IEEE, 2002, pp. 1886–1897. https://doi.org/10.1109/OCEANS.2002.1191918. Search in Google Scholar

Sun Q, Zhou H. An acoustic sea glider for deep-sea noise profiling using an acoustic vector sensor. Polish Maritime Research, vol. 29, no. 1, pp. 57–62, Mar. 2022. https://doi.org/10.2478/pomr-2022-0006. Search in Google Scholar

Wang X, Wang Y, Wang P, Yang S, Niu W, Yang Y. Design, analysis, and testing of petrel acoustic autonomous underwater vehicle for marine monitoring. Physics of Fluids, vol. 34, no. 3, p. 037115, Mar. 2022. https://doi.org/10.1063/5.0083951. Search in Google Scholar