Acceso abierto

Spectral Analysis of Compass Errors Based on Fast Fourier Transform and Reduction Absolute Errors Using a Pass-Band Finite Impulse Response Filter


Cite

K. Pyrchla, A. Tomczak, G. Zaniewicz, J. Pyrchla, and P. Kowalska, “Analysis of the dynamic height distribution at the estuary of the Odra river based on gravimetric measurements acquired with the use of a light survey boat—A case study,” Sensors (Switzerland), vol. 20, no. 21, pp. 1–17, 2020, doi: 10.3390/s20216044. Search in Google Scholar

A. Tomczak, G. Stępień, T. Abramowski, and A. Bejger, “Subsea wellhead spud-in marking and as-built position estimation method based on ultra-short baseline acoustic positioning,” Meas. J. Int. Meas. Confed., vol. 195, no. September 2021, pp. 1–15, 2022, doi: 10.1016/j.measurement.2022.111155. Search in Google Scholar

IMO, Resolution A.424(XI) adopted on 15 November 1979: Performance Standards for Gyro Compasses, vol. 424, November. United Kingdom, 1979. [Online]. Available: https://wwwcdn.imo.org/localresources/en/KnowledgeCentre/IndexofIMOResolutions/AssemblyDocuments/A.424(11).pdf, access: 11.04.2024 Search in Google Scholar

M. V. Chichinadze, “Marine gyrocompasses: Development and prospects,” Gyroscopy Navig., vol. 9, no. 4, pp. 358–361, 2018, doi: 10.1134/S207510871804003X. Search in Google Scholar

E. Lushnikov, “The reliability of compass information at navigational safety,” Sci. Journals Marit. Univ. Szczecin, vol. 29, pp. 117–121, 2012. Accessed: Jan. 13, 2023. [Online]. Available: https://repository.am.szczecin.pl/handle/123456789/434 Search in Google Scholar

E. Lushnikov and K. Pleskacz, “The precision of compass error observation using parallel lines option in radar,” Sci. Journals Marit. Univ. Szczecin, vol. 29, pp. 126–129, 2012. Search in Google Scholar

A. Felski and M. Mięsikowski, “Some method of determining the characteristic frequencies of ship’s yawing and errors of ship’s compasses during the seatrials,” Annu. Navig, vol. 2, pp. 17–24, 2000. Search in Google Scholar

G. Emel’yantsev et al., “Integrated GNSS/IMU-gyrocompass with rotating IMU. Development and test results,” Remote Sens., vol. 12, no. 22, p. 3736, Nov. 2020, doi: 10.3390/rs12223736. Search in Google Scholar

A. Borys, “On derivation of discrete time Fourier transform from its continuous counterpart,” Int. J. Electron. Telecommun., vol. 66, no. 2, pp. 355–368, 2020, doi: 10.24425/ijet.2020.131885. Search in Google Scholar

A. R. Spielvogel and L. L. Whitcomb, “Preliminary results with a low-cost fiber-optic gyrocompass system,” in OCEANS 2015 - MTS/IEEE, Washington: IEEE, 2015, pp. 1–5. Search in Google Scholar

J. Marszal, “Digital signal processing applied to the modernization of Polish Navy sonars,” Polish Marit. Res., vol. 21, no. 2, pp. 65–75, 2014, doi: 10.2478/pomr-2014-0021. Search in Google Scholar

K. Jaskólski, A. Felski, and P. Piskur, “The compass error comparison of an onboard standard gyrocompass, fiber-optic gyrocompass (FOG) and satellite compass,” Sensors, vol. 19, no. 8, p. 1942, Apr. 2019, doi: 10.3390/s19081942. Search in Google Scholar

A. Felski, K. Jaskólski, K. Zwolak, and P. Piskur, “Analysis of satellite compass error’s spectrum,” Sensors, vol. 20, no. 15, p. 4067, Jul. 2020, doi: 10.3390/s20154067. Search in Google Scholar

A. Makar, “Determination of USV’s direction using satellite and fluxgate compasses and GNSS-RTK,” Sensors, vol. 22, no. 20, pp. 1–17, 2022, doi: 10.3390/s22207895. Search in Google Scholar

K. Jaskólski, “Methodology for verifying the indication correctness of a vessel compass based on the spectral analysis of heading errors and reliability theory,” Sensors, vol. 22, no. 7, p. 2530, Mar. 2022, doi: 10.3390/s22072530. Search in Google Scholar

M. Ueno, R. Santerre, and S. Babineau, “Impact of the antenna configuration on GPS attitude determination,” in Proceedings of the 9th World Congress of the International Association of the Institutes of Navigation, Amsterdam, The Netherlands: International Association of the Institutes of Navigation, 1997. Search in Google Scholar

H. Hu, S. Song, and Y. Gong, “General FIR filter design with linear phase in passband by water cycle algorithm,” J. Comput. Commun., vol. 06, no. 11, pp. 326–331, 2018, doi: 10.4236/jcc.2018.611029. Search in Google Scholar

A. Rak and A. Miller, “Modelling of lake waves to simulate environmental disturbance to a scale ship model,” Polish Marit. Res., vol. 30, no. 3, pp. 12–21, 2023, doi: 10.2478/pomr-2023-0035. Search in Google Scholar

K. Marianoga and B. Palczynska, “The simulation laboratory platform based on Multisim for electronic engineering education,” in 2018 Int. Conf. Signals Electron. Syst. ICSES 2018 - Proc., pp. 269–274, 2018, doi: 10.1109/ICSES.2018.8507313. Search in Google Scholar

H.-C. Lin and Y.-C. Ye, “Reviews of bearing vibration measurement using fast Fourier transform and enhanced fast Fourier transform algorithms,” Adv. Mech. Eng., vol. 11, no. 1, p. 1687814018816751, Jan. 2019, doi: 10.1177/1687814018816751. Search in Google Scholar

W. Biao, T. Jiansheng, Y. Fujian, and Z. Zhiyu, “Identification of sonar detection signal based on fractional Fourier transform,” Polish Marit. Res., vol. 25, pp. 125–131, 2018, doi: 10.2478/pomr-2018-0083. Search in Google Scholar

G. Yan, Y. Hu, and J. Jiang, “A novel fault diagnosis method for marine blower with vibration signals,” Polish Marit. Res., vol. 29, no. 2, pp. 77–86, 2022, doi: 10.2478/pomr-2022-0019. Search in Google Scholar

Y. J. Yoo, “Fault detection of induction motor using fast Fourier transform with feature selection via principal component analysis,” Int. J. Precis. Eng. Manuf., vol. 20, no. 9, pp. 1543–1552, 2019, doi: 10.1007/s12541-019-00176-z. Search in Google Scholar

E. Rajaby and S. M. Sayedi, “A structured review of sparse fast Fourier transform algorithms,” Digit. Signal Process. A Rev. J., vol. 123, p. 103403, 2022, doi: 10.1016/j.dsp.2022.103403. Search in Google Scholar

Q. Xu et al., “Study on the dynamic response of deep-sea trawlers in sea trials,” Polish Marit. Res., vol. 30, no. 1, pp. 25–32, 2023, doi: 10.2478/pomr-2023-0003. Search in Google Scholar

K. Czarnecki, “Bearing estimation using double frequency,” Polish Marit. Res., vol. 24, no. 95, pp. 26–35, 2017. [Online]. Available: 10.1515/pomr-2017-0087. Search in Google Scholar

S. Dhabal and S. Sengupta, “Efficient design of high pass FIR filter using quantum-behaved particle swarm optimization with weighted mean best position,” in Proc. 2015 3rd Int. Conf. Comput. Commun. Control Inf. Technol. C3IT 2015, January, 2015, doi: 10.1109/C3IT.2015.7060145. Search in Google Scholar

PRS, Przepisy nadzoru konwencyjnego statków morskich. Część V. Urządzenia Nawigacyjne, vol. V. Gdańsk: PRS, 2019. Search in Google Scholar

M. Yang, E. Isufi, M. T. Schaub, and G. Leus, “Finite impulse response filters for simplicial complexes,” in 2021 29th European Signal Processing Conference (EUSIPCO), 2021, pp. 2005–2009. doi: 10.23919/EUSIPCO54536.2021.9616185. Search in Google Scholar

J. Konopacki, “Design of sparse FIR filters with low group delay,” Int. J. Electron. Telecommun., vol. 67, no. 1, pp. 121–126, 2021, doi: 10.24425/ijet.2021.135953. Search in Google Scholar

P. Zahradnik, “Robust analytical design of optimal equiripple lowpass FIR filters,” IEEE Signal Process. Lett., vol. 27, pp. 755–759, 2020, doi: 10.1109/LSP.2020.2989679. Search in Google Scholar

Matlab, Signal processing toolbox, User’s guide R2021a. Natick, USA: MathWorks, 2021. Search in Google Scholar

A. Felski and K. Jaskólski, “The properties of a ship’s compass in the context of ship manoeuvrability,” Sensors, vol. 23, no. 3, pp. 1–15, 2023, doi: 10.3390/s23031254. Search in Google Scholar

P. Zalewski, A. Bąk, and M. Bergmann, “Evolution of maritime GNSS and RNSS performance standards,” Remote Sens., vol. 14, no. 21, pp. 1–27, 2022, doi: 10.3390/rs14215291 Search in Google Scholar

eISSN:
2083-7429
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences