Acceso abierto

Dynamic Modelling and Experimental Analysis of an Offshore Crane Payload Positioning System with a Parallel Cable-Driven Method


Cite

Hongzhang J, Xuliang Y. Ship control principle, second edition. Harbin Engineering University Press; 2001. Search in Google Scholar

Li Z, Ma X, Li Y. Anti-swing control for a double-pendulum offshore boom crane with ship roll and heave movements. IEEE 16th International Conference on Control and Automation, pp. 165-170, Oct. 2020. DOI:10.1109/ICCA51439.2020.9264524. Search in Google Scholar

Konrad Johan J, Ebbesen M, Hansen M. Development of point-to-point path control in actuator space for hydraulic knuckle boom crane. Modeling, Identification and Control, vol. 42, no. 3, pp. 113-129, 2021. DOI: 10.3390/act9020027. Search in Google Scholar

Shamseldin M. Design of auto-tuning nonlinear PID tracking speed control for electric vehicle with uncertainty consideration. World Electric Vehicle Journal, vol. 14, no. 4, Apr. 2023. DOI: 10.3390/wevj14040078. Search in Google Scholar

De Kruif B, Rossin B. Pendulation control for dynamical positioning capable ship; Considerations on actuator usage. IFAC Papers Online, vol. 54, no. 16, pp. 120-125, Nov. 2021. DOI: 10.1016/j.ifacol.2021.10.082. Search in Google Scholar

Goodarzi R, Korayem M, Tourajizadeh H, et al. Nonlinear dynamic modeling of a mobile spatial cable-driven robot with flexible cables. Nonlinear Dynamics, vol. 108, no. 4, pp. 3219-3245, Jun. 2022. DOI: 10.1007/s11071-022-07397-4. Search in Google Scholar

Ashkoofaraz S, Lori A. Aerial load transportation with obstacle avoidance in observed environment. 2022 10th RSI International Conference on Robotics and Mechatronics, pp. 248-253. 2022. DOI: 10.1109/ICRoM57054.2022.10025232. Search in Google Scholar

Casas J, Chang C, Duenas V. Switched adaptive concurrent learning control using a stance foot model for gait rehabilitation using a hybrid exoskeleton. IFAC Papers Online, vol. 55, no. 41, pp. 187-192, Feb. 2023. DOI:10.1016/j.ifacol.2023.01.124. Search in Google Scholar

Shenghao T, Huaitao S, Peng Z, et al.. Research on accurate motion control of cable crane based on variable structure sliding mode. Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 45, no. 6, p. 316, Jun. 2023. DOI:10.1007/s40430-023-04236-4. Search in Google Scholar

Bin G, Yong C. Fuzzy robust fault-tolerant control for offshore ship-mounted crane system. Information Sciences, vol. 526, pp. 119-132, Jul. 2020. DOI: 10.1016/j. ins.2020.03.068. Search in Google Scholar

Manh Cuonga H, Van Thai N, et al. Nonsingular fractional-order integral fast-terminal sliding mode control for under actuated shipboard cranes. Journal of the Franklin Institute, vol. 359, pp. 6587-6606, 2022. DOI: 10.1109/CDC.2014.7040128. Search in Google Scholar

Lu B, Fang Y, Sun N, et al. Nonlinear coordination control of offshore boom cranes with bounded control inputs. International Journal of Robust & Nonlinear Control, vol. 29, no. 4, pp. 1165-1181, Mar. 2019. DOI: 10.1109/ACC.2012.6314810. Search in Google Scholar

Yuzhe Q, Yongchun F, Tong Y. An energy-based nonlinear coupling control for offshore ship-mounted cranes. International Journal of Automation & Computing, vol. 15, no. 5, pp. 570-581, Oct. 2018. DOI: 10.1109/TSMC.2017.2700393. Search in Google Scholar

Li X, Peng X, Geng Z. Anti-swing control for 2-D under-actuated cranes with load hoisting/lowering: A coupling-based approach. ISA Transactions, vol. 95, pp. 372-378, Dec. 2019. DOI: 10.1016/j.isatra.2019.04.033. Search in Google Scholar

Yuchi C, Tieshan L. Review of anti-swing control of shipboard cranes. IEEECAA Journal of Automatica Sinica, vol. 7, no. 2, pp. 346-354, Mar. 2020. DOI: 10.1109/ JAS.2020.1003024. Search in Google Scholar

Jianli W, Kexin L, Shenghai W, et al. Dynamic analysis and experiment of underactuated double-pendulum anti-swing device for ship-mounted jib cranes. Polish Maritime Research, vol. 29, no. 4, pp. 145-154, Dec. 2022. DOI: 10.2478/pomr-2022-0052. Search in Google Scholar

Shi H, Yao F, Yuan Z, et al. Enhanced-coupling-based tracking control of double pendulum gantry cranes. International Journal of Control Automation and Systems, vol. 20, no. 7, pp. 2260-2272, Jul. 2022. DOI: 10.1007/ s12555-021-0401-9. Search in Google Scholar

McKenzie R, Irani R. Motion compensation for maritime cranes during time-varying operations at the pendulum’s natural frequency. Mechanism and Machine Theory, vol. 168, p. 104573, Feb. 2022. DOI: 10.1016/j. mechmachtheory.2021.104573. Search in Google Scholar

Xiyang H, Huanbin L, et al. Application of four-rope theory to integral hoisting of marine booster station. Engineering Journal of Wuhan University, vol. 51 (Sup), pp. 304-307, Aug. 2018. DOI: 10.1007/s12206-020-0415-x. Search in Google Scholar

Bozkurt B, Erdogan M. Heave and horizontal displacement and anti-sway control of payload during ship-to-ship load transfer with an offshore crane on very rough sea conditions. Ocean Engineering, vol. 267, p. 113309, Jan. 2023. DOI: 10.1016/j.oceaneng.2022.113309. Search in Google Scholar

Menghua Z, Yibin X, Xincheng T. Adaptive tracking control for double-pendulum overhead cranes subject to tracking error limitation, parametric uncertainties and external disturbances. Mechanical Systems and Signal Processing, vol. 76, pp. 15-32, Aug. 2016. DOI: 10.1016/j. ymssp.2016.02.013. Search in Google Scholar

Ren Z, Verma A, Ataei B, et al. Model-free anti-swing control of complex-shaped payload with offshore floating cranes and a large number of lift wires. Ocean Engineering, vol. 228, p. 108868, May 2021. DOI: 10.1016/j. oceaneng.2021.108868. Search in Google Scholar

Casas J, Chang C, Duenas V. Concurrent learning control for treadmill walking using a cable-driven exoskeleton with FES. in American Control Conference, pp. 3019-3024, 2022. DOI: 10.23919/ACC53348.2022.9867186. Search in Google Scholar

Ryszard B, Bartłomiej Z. Finite element fatigue analysis of unsupported crane. Polish Maritime Research, vol. 28, no. 1, pp. 127-135, Mar. 2021. DOI:10.2478/pomr-2021-0012. Search in Google Scholar

Craig J. Introduction to robotics, mechanics and control, fourth edition. China Machine; 2019. Search in Google Scholar

eISSN:
2083-7429
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences