Acceso abierto

Design of an Autonomous IoT Node Powered by a Perovskite-Based Wave Energy Converter


Cite

P. Girard and S. Girard, Brevet D’invention De Quinze Ans, “Pour divers moyens d’employer les vagues de la mer, comme moteurs,” a patent for invention, Paris 1799, 349. Search in Google Scholar

T. Aderinto and H. Li, “Ocean wave energy converters: Status and challenges,” Energies, vol. 11, p. 1250, 2018. doi:/10.3390/en11051250. Search in Google Scholar

A. Clément et al., “Wave energy in Europe: Current status and perspectives,” Renewable and Sustainable Energy Reviews, vol. 6, p. 5, 2002. doi:10.1016/S1364-0321(02)00009-6. Search in Google Scholar

M. S. Lagoun, A. Benalia, and M. E. H. Benbouzid, “Ocean wave converters: State of the art and current status,” Proceedings of the 2010 IEEE ENERGYCON, Manama (Bahraïn), December 2010, pp. 636–642. Search in Google Scholar

A. Maria-Arenas et al., “Control strategies applied to wave energy converters: State of the art,” Energies, vol. 12, p. 3115, 2019. doi:10.3390/en12163115. Search in Google Scholar

M. A. Jusoh et al., “Hydraulic power take-off concepts for wave energy conversion system: A review,” Energies, vol. 12, p. 4510, 2019. doi:10.3390/en12234510. Search in Google Scholar

S. Chiba et al., “Consistent ocean wave energy harvesting using electroactive polymer (dielectric elastomer) artificial muscle generators,” Applied Energy, vol. 104, pp. 497–502, 2013. doi:10.1016/j.apenergy.2012.10.052. Search in Google Scholar

X. Chou et al., “All-in-one filler-elastomer-based high-performance stretchable piezoelectric nanogenerator for kinetic energy harvesting and self-powered motion monitoring,” Nano Energy, vol. 53, pp. 550–558, 2018. doi:10.1016/j.nanoen.2018.09.006. Search in Google Scholar

M. Weiser, “The computer for the 21st century,” Scientific American, vol. 265, pp. 94–104, 1991. Search in Google Scholar

R. Qiu and Z. Zhang, “Design of enterprise Web servers in support of instant information retrievals,” IEEE RFID Virtual Journal, pp. 2661-2666, vol. 3, 2003. doi:10.1109/ICSMC.2003.1244286. Search in Google Scholar

M. H. Miraz et al., “A review on Internet of Things (IoT), Internet of Everything (IoE) and Internet of Nano Things (IoNT),” IEEE Spectrum, pp. 219–224, 2015. doi:10.1109/ITechA.2015.7317398. Search in Google Scholar

T. Hiramoto et al., “Ultra-low power and ultra-low voltage devices and circuits for IoT applications,” IEEE Silicon Nanoelectronics Workshop (SNW), pp. 146–147, 2016. doi:10.1109/SNW.2016.7578025. Search in Google Scholar

S. K. Vishwakarma et al., “Smart energy efficient home automation system using IoT,” IEEE 4th International Conference on Internet of Things: Smart Innovation and Usages (IoT-SIU), pp. 1–4, 2019. doi: 10.1109/IoT-SIU.2019.8777607. Search in Google Scholar

K. Wasa, et al., “Thin films of PZT-based ternary perovskite compounds for MEMS,” IEEE Ultrasonics Symposium, pp. 213–216, 2008. doi:10.1109/ULTSYM.2008.0052. Search in Google Scholar

J. Dudziak, “Dynamika środowiska,” in Teoria okrętu, Wydawnictwo Morskie, Gdańsk, Poland, 1988, p. 338 (in Polish). Search in Google Scholar

A. Iafrati et al., “Laboratory modelling of waves: Regular, irregular and extreme events,” in Proceedings of the Specialist Committee on Modeling of Environmental Conditions, 28th ITTC, Wuxi, China, 17–22 September 2017, p. 8. Search in Google Scholar

C. T. Stansberg et al., “Final report and recommendations to the 23rd ITTC,” in Proceedings of the 23rd ITTC, Volume II, Specialist Committee on Waves, Venice, Italy, 8–14 September 2002, p. 517, pp. 544–551. Search in Google Scholar

G. G. Cox et al., “Report of the Seakeeping Committee,” in Proceedings of the 17th ITTC, Volume I, Seakeeping Committee, 17th ITTC, Goteborg, Sweden, 8–15 September 1984, p. 482. Search in Google Scholar

M. Drzewiecki and J. Guziński, “Fuzzy control of waves generation in a towing tank,” Energies, vol. 13, p. 2049, 2020. doi:10.3390/en13082049. Search in Google Scholar

APC International, Ltd., “Modes of vibration for common piezoelectric ceramic shapes,” in Piezoelectric Ceramics: Principles and Applications, APC International, Ltd.: Mackeyville, PA, USA, 2011, Table 1.8. Search in Google Scholar

Pervasive Displays 2.71” E-ink display. Accessed: Feb. 11, 2023 [Online]. Available: https://www.pervasivedisplays.com/product/2-71-e-ink-display/ Search in Google Scholar

STM32WL55JC Sub-GHz Wireless Microcontrollers. Dual-core Arm Cortex-M4/M0+ @48 MHz with 256 Kbytes of Flash memory, 64 Kbytes of SRAM. LoRa, (G)FSK, (G)MSK, BPSK modulations. AES 256-bit. Multiprotocol System-on-Chip. Accessed: Feb. 11, 2023). [Online] Available: https://www.st.com/en/microcontrollers-microprocessors/stm32wl55jc.html Search in Google Scholar

Pervasive Displays, “How low-power e-paper displays enhance IoT applications.” Accessed Feb. 11, 2023. [Online]. Available: https://www.pervasivedisplays.com/how-e-paper-works/ Search in Google Scholar

The Things Network, “What are LoRa and LoRaWAN?” Accessed Feb. 11, 2023. [Online]. Available: https://www.thethingsnetwork.org/docs/lorawan/what-is-lorawan/ Search in Google Scholar

N. Jovalekic et al., “Experimental study of LoRa transmission over seawater,” Sensors, vol. 18, p. 2853, 2018. doi: 10.3390/s18092853. Search in Google Scholar

The Things Network Global Team, “LoRaWAN® distance world record broken, twice.” Accessed Feb. 11, 2023. [Online]. Available: https://www.thethingsnetwork.org/article/lorawan-world-record-broken-twice-in-single-experiment-1 Search in Google Scholar

“MPICOSYS Low Power Innovators Invent, Design & Produce For You.” Accessed Feb. 11, 2023. [Online]. Available: https://www.mpicosys.com/ Search in Google Scholar

L. H. Holthuijsen, Waves in Oceanic and Coastal Waters. Cambridge: Cambridge University Press, 2007, p. 4. Search in Google Scholar

Copernicus Marine Service Information, “Global Ocean Waves Analysis and Forecast,” doi:10.48670/moi-00017. Accessed Feb. 19, 2023. [Online]. Available: https://data.marine.copernicus.eu/product/GLOBAL_ANALYSISFORECAST_WAV_001_027/description Search in Google Scholar

P. Gualeni et al., “Confidence intervals for significant wave height and modal period,” In Recommended Procedures and Guidelines, Specialist Committee on Stability in Waves of the 28th ITTC, Wuxi, China, 17–22 September 2017, p. 4. Search in Google Scholar

eISSN:
2083-7429
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences