Cite

1. M. Liu, H. Liu, X. Zheng, H. Chen, L. Wang, and L. Zhang, “Nonlinear PTO effect on performance of vertical axisymmetric wave energy converter using semi-analytical method,” Polish Marit. Res., vol. 24, no. S3, 2017, doi: 10.1515/pomr-2017-0104. Open DOISearch in Google Scholar

2. Wave energy in the UK: Status review and future perspectives. Siya Jin, Deborah Greaves. doi.org/10.1016/j.rser.2021.110932 Search in Google Scholar

3. “Global oceanic wave energy resource dataset—with the Maritime Silk Road as a case study,” doi.org/10.1016/j.renene.2021.01.058 Search in Google Scholar

4. W. Lai, Y. Xie, and D. Li, “Numerical study on the optimization of hydrodynamic performance of oscillating buoy wave energy converter,” Polish Marit. Res., vol. 28, no. 1, 2021, doi: 10.2478/pomr-2021-0005. Open DOISearch in Google Scholar

5. F. Taveira-Pinto, G. Iglesias, P. Rosa-Santos, and Z. D. Deng, “Preface to special topic: Marine renewable energy,” J. Renew. Sustain. Energy, 7 (2015), 061601.doi.org/10.1063/1.493908610.1063/1.4939086 Search in Google Scholar

6. Lai W, Xie Y, Li D. Numerical study on the optimization of hydrodynamic performance of oscillating buoy wave energy converter[J]. Polish Maritime Research, 2021.10.2478/pomr-2021-0005 Search in Google Scholar

7. Lai W, Li D, Xie Y. Simulation and experimental study of hydraulic cylinder in oscillating float-type wave energy converter[J]. Polish Maritime Research, 2020.10.2478/pomr-2020-0024 Search in Google Scholar

8. H. Shao et al., “Triboelectric-electromagnetic hybrid generator for harvesting blue energy,” Nano-micro Lett.,vol. 10, no. 54, 2018.10.1007/s40820-018-0207-3619910730393702 Search in Google Scholar

9. F. R. Fan, W. Tang, Y. Yao, J. Luo, C. Zhang, and Z. L. Wang, “Complementary power output characteristics of electromagnetic generators and triboelectric generators,” Nanotechnology, vol. 25, p. 135402, 2014.10.1088/0957-4484/25/13/135402 Search in Google Scholar

10. G. Zhu et al., “A shape-adaptive thin-film-based approach for 50% high-efficiency energy generation through micro-grating sliding electrification,” Adv. Mater., vol. 26, pp. 3788–96, 2014, doi.org/10.1002/adma.201400021.10.1002/adma.201400021 Search in Google Scholar

11. S. Niu et al., “Theory of sliding-mode triboelectric nanogenerators,” Adv. Mater., vol. 25, no. 43, pp. 6184-6193, 2013, doi.org/10.1002/adma.201302808.10.1002/adma.201302808 Search in Google Scholar

12. X. Zhang et al., “Review of nano-phase effects in high strength and conductivity copper alloys,” Nanotechnology Reviews, vol. 8, no. 1, pp. 383-395, 2019, doi.org/10.1515/ntrev-2019-0034.10.1515/ntrev-2019-0034 Search in Google Scholar

13. T. Jiang et al., “Structural optimization of triboelectric nanogenerator for harvesting water wave energy,” ACS Nano, vol. 9, no. 12, pp. 12562-12572, 2015, doi.org/10.1021/acsnano.5b06372.10.1021/acsnano.5b06372 Search in Google Scholar

14. L. Xu, et al., “Integrated triboelectric nanogenerator array based on air-driven mem-brane structures for water wave energy harvesting,” Nano Energy, vol. 31, pp, 351-358, 2017, doi.org/10.1016/j.nanoen.2016.11.037.10.1016/j.nanoen.2016.11.037 Search in Google Scholar

15. J. Lucas, S. H. Salter, J. Cruz, R. J. M. Taylor, and I. Bryden, “Performance optimisation of a modified Duck through optimal mass distribution,” in Proceedings of the 8th European Wave and Tidal Energy Conference, Uppsala, Sweden, 2009. pp. 7-9. Search in Google Scholar

16. J. Liu, P. Fei, J. Zhou, R. Tummala, and Z. L. Wang, “Toward high output-power nanogenerator,” Appl. Phys. Lett., vol. 92, p. 173105, 2008, doi.org/10.1063/1.2918840.10.1063/1.2918840 Search in Google Scholar

17. Y. Li and Y. H. Yu, “A synthesis of numerical methods for modeling wave energy converter-point absorbers,” Renewable and Sustainable Energy Reviews, vol. 16, no. 6, pp. 4352-4364, 2012, doi.org/10.1016/j.rser.2011.11.008.10.1016/j.rser.2011.11.008 Search in Google Scholar

18. Liang X, Jiang T, Liu G, et al. Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy[J]. Energy & Environmental Science, 2020, 13(1): 277-285.10.1039/C9EE03258D Search in Google Scholar

19. Zhang D, Shi J, Si Y, et al. Multi-grating triboelectric nanogenerator for harvesting low-frequency ocean wave energy[J]. Nano Energy, 2019, 61: 132-140.10.1016/j.nanoen.2019.04.046 Search in Google Scholar

20. Huang B, Wang P, Wang L, et al. Recent advances in ocean wave energy harvesting by triboelectric nanogenerator: An overview[J]. Nanotechnology Reviews, 2020, 9(1): 716-735.10.1515/ntrev-2020-0055 Search in Google Scholar

21. L. Cameron, et al., “Design of the next generation of the Oyster wave energy converter,” in 3rd International Conference on Ocean Energy, ICOE Bilbao, Spain, 2010, vol. 6, p. 1e12. Search in Google Scholar

22. K. Budal and J. Falnes, “Interacting point absorbers with controlled motion. power from sea waves,” Edinburgh, UK, pp. 381-398. Search in Google Scholar

23. M. Folley, MT. J. T. Whittaker, and A. Henry, “The effect of water depth on the performance of a small surging wave energy converter,” Ocean Engineering, vol. 34, no. 8-9, pp. 1265-1274, 2007, doi.org/10.1016/j.oceaneng.2006.05.015.10.1016/j.oceaneng.2006.05.015 Search in Google Scholar

24. Z. LináWang, “Triboelectric nanogenerators as new energy technology and self-powered sensors–Principles, problems and perspectives,” Faraday Discussions, vol. 176, pp. 447-458, 2014, doi.org/10.1021/nn404614z.10.1039/C4FD00159A Search in Google Scholar

25. H. Zou, Y. Zhang, L. Guo, P. Wang, X. He, G. Dai, H. Zheng, C. Chen, A. C. Wang, C. Xu, and Z. L. Wang, “Quantifying the triboelectric series,” Nat. Commun., vol. 10, p. 1427, 2019.10.1038/s41467-019-09461-x644107630926850 Search in Google Scholar

eISSN:
2083-7429
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences