Acceso abierto

A Method for the Interpretation of Sonar Data Recorded during Autonomous Underwater Vehicle Missions


Cite

1. P. Smith Menandro and A. Cardoso Bastos, “Seabed Mapping: A Brief History from Meaningful Words”, Geosciences, vol. 10, no. 7, Art. no. 7, Jul. 2020, doi: 10.3390/geosciences10070273. Open DOISearch in Google Scholar

2. T. Kogut and K. Bakuła, “Improvement of Full Waveform Airborne Laser Bathymetry Data Processing based on Waves of Neighbourhood Points”, Remote Sens., vol. 11, no. 10, Art. no. 10, Jan. 2019, doi: 10.3390/rs11101255. Open DOISearch in Google Scholar

3. M. Żokowski, M. Chodnicki, P. Krogulec, and N. Sigiel, “Procedures concerning preparations of autonomous underwater systems to operation focused on detection, classification and identification of mine like objects and ammunition”, J. KONBiN, vol. 48, pp. 149–168, Dec. 2018, doi: 10.2478/jok-2018-0051. Open DOISearch in Google Scholar

4. S. Sivčev, J. Coleman, E. Omerdić, G. Dooly, and D. Toal, “Underwater manipulators: A review”, Ocean, Eng., vol. 163, pp. 431–450, Sep. 2018, doi: 10.1016/j.oceaneng.2018.06.018. Open DOISearch in Google Scholar

5. C. Roman and R. Mather, “Autonomous Underwater Vehicles as Tools for Deep-Submergence Archaeology”, Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ., vol. 224, no. 4, pp. 327–340, Nov. 2010, doi: 10.1243/14750902JEME202. Open DOISearch in Google Scholar

6. L. A. Gonzalez, “Design, Modelling and Control of an Autonomous Underwater Vehicle”, Bachelor of Engineering Honours Thesis 2004, The University of Western Australia, 2004. Search in Google Scholar

7. Y. Ji, S. Kwak, A. Yamashita, and H. Asama, “Acoustic camera-based 3D measurement of underwater objects through automated extraction and association of feature points”, IEEE Int. Conf. Multisens. Fusion Integr. Intell. Syst., vol. 0, pp. 224–230, 2016, doi: 10.1109/MFI.2016.7849493. Open DOISearch in Google Scholar

8. W. Kazimierski and G. Zaniewicz, “Determination of Process Noise for Underwater Target Tracking with Forward Looking Sonar”, Remote Sens., vol. 13, no. 5, Art. no. 5, Jan. 2021, doi: 10.3390/rs13051014. Open DOISearch in Google Scholar

9. T. Zhang, S. Liu, X. He, H. Huang, and K. Hao, “Underwater Target Tracking Using Forward-Looking Sonar for Autonomous Underwater Vehicles”, Sensors, vol. 20, no. 1, p. 102, Dec. 2019, doi: 10.3390/s20010102.698277031878003 Open DOISearch in Google Scholar

10. O. Y. Sergiyenko and V. V. Tyrsa, “3D Optical Machine Vision Sensors with Intelligent Data Management for Robotic Swarm Navigation Improvement”, IEEE Sens. J., vol. 21, no. 10, Art. no. 10, 2021, doi: 10.1109/JSEN.2020.3007856. Open DOISearch in Google Scholar

11. K. Bikonis, M. Moszyński, and Z. Łubniewski, “Application of Shape From Shading Technique for Side Scan Sonar Images”, Pol. Marit. Res., vol. 20, pp. 39–44, 2013, doi: 10.2478/pomr-2013-0033. Open DOISearch in Google Scholar

12. G. Grelowska, E. Kozaczka, and W. Szymczak, “Acoustic Imaging of Selected Areas of Gdansk Bay with the Aid of Parametric Echosounder and Side-Scan Sonar”, Pol. Marit. Res., vol. 24, no. 4, pp. 35–41, Dec. 2017, doi: 10.1515/pomr-2017-0133. Open DOISearch in Google Scholar

13. J. M. Topple and J. A. Fawcett, “MiNet: Efficient Deep Learning Automatic Target Recognition for Small Autonomous Vehicles”, IEEE Geosci. Remote Sens. Lett., vol. 18, no. 6, pp. 1014–1018, Jun. 2021, doi: 10.1109/LGRS.2020.2993652. Open DOISearch in Google Scholar

14. H. Yu, Z. Li, D. Li, and T. Shen, “Bottom Detection Method of Side-Scan Sonar Image for AUV Missions”, Complexity, vol. 2020, pp. 1–9, Oct. 2020, doi: 10.1155/2020/8890410. Open DOISearch in Google Scholar

15. X. Zhang, C. Tan, and W. Ying, “An Imaging Algorithm for Multireceiver Synthetic Aperture Sonar”, Remote Sens., vol. 11, no. 6, Art. no. 6, Jan. 2019, doi: 10.3390/rs11060672. Open DOISearch in Google Scholar

16. W. Chen, L. Wang, Y. Zhang, X. Li, J. Liu, and W. Wang, “Anti-disturbance grabbing of underwater robot based on retinex image enhancement”, Chinese Automation Congress (CAC), Nov. 2019, pp. 2157–2162. doi: 10.1109/CAC48633.2019.8997332. Open DOISearch in Google Scholar

17. X. Wang, Q. Li, J. Yin, X. Han, and W. Hao, “An Adaptive De-noising and Detection Approach for Underwater Sonar Image”, Remote Sens., vol. 11, no. 4, Art. no. 4, Jan. 2019, doi: 10.3390/rs11040396. Open DOISearch in Google Scholar

18. J. C. Isaacs, “Sonar automatic target recognition for underwater UXO remediation,” in 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Jun. 2015, pp. 134–140. doi: 10.1109/CVPRW.2015.7301307. Open DOISearch in Google Scholar

19. A. Waite, Sonar for Practising Engineers, 3 rd. Wiley: Hoboken, NJ, USA, 2002. Accessed: Jun. 15, 2021. [Online].Available: https://www.wiley.com/en-us/Sonar+for+Practising+Engineers%2C+3rd+Edition-p-9780471497509 Search in Google Scholar

20. R. Heremans, Y. Dupont, and M. Acheroy, “Motion Compensation in High Resolution Synthetic Aperture Sonar (SAS) Images”. IntechOpen, 2009. doi: 10.5772/39408. Open DOISearch in Google Scholar

21. F. Florin, F. Fohanno, I. Quidu, and J. Malkasse, “Synthetic Aperture and 3D Imaging for Mine Hunting Sonar”, Engineering, 2004, Accessed: Jun. 11, 2021. [Online]. Available:/paper/Synthetic-Aperture-and-3D-Imaging-for-Mine-Hunting-Florin-Fohanno/0cff43ea7dc424e21b9ed83d 256a2e25eda4a312 Search in Google Scholar

22. M. Zieja, M. Ważny, and S. Stępień, “Outline of a method for estimating the durability of components or device assemblies while maintaining the required reliability level”, Eksploat. Niezawodn. - Maint. Reliab., vol. 20, no. 2, 2018, doi: 10.17531/ein.2018.2.11. Open DOISearch in Google Scholar

23. D. T. Cobra, A. V. Oppenheim, and J. S. Jaffe, “Geometric distortions in Side-Scan Sonar images: A Procedure for their estimation and correction”, J. Ocean. Eng., vol. 17, no. 3, 1992.10.1109/48.153442 Search in Google Scholar

24. M. Machado, P. Drews-Jr, P. Núñez, and S. Botelho, “Semantic Mapping on Underwater Environment Using Sonar Data”. 2016. doi: 10.1109/LARS-SBR.2016.48. Open DOISearch in Google Scholar

25. P. Blondel, The Handbook of Sidescan Sonar. Berlin Heidelberg: Springer-Verlag, 2009. doi: 10.1007/978-3-540-49886-5. Open DOISearch in Google Scholar

26. K. H. Talib, M. Y. Othman, S. A. H. Sulaiman, M. A. M. Wazir, and A. Azizan, “Determination of speed of sound using empirical equations and SVP”, in 2011 IEEE 7th International Colloquium on Signal Processing and its Applications, 2011, pp. 252–256.10.1109/CSPA.2011.5759882 Search in Google Scholar

27. R. J. Urick, Principles of Underwater Sound, 3rd ed. Peninsula Pub, 1996. Accessed: Jun. 03, 2021. [Online]. Available: https://www.abebooks.com/9780932146625/Principles-Underwater-Sound-3rd-Edition-0932146627/plp Search in Google Scholar

28. X. Shang, J. Zhao, and H. Zhang, “Automatic Overlapping Area Determination and Segmentation for Multiple Side Scan Sonar Images Mosaic”, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 14, pp. 2886–2900, 2021, doi: 10.1109/JSTARS.2021.3061747. Open DOISearch in Google Scholar

29. J. Tęgowski and A. Zielinski, “Synthesis And Wavelet Analysis Of Side-Scan Sonar Sea Bottom Imagery”, Hydroacoustics, vol. 9, 2006. Search in Google Scholar

30. A. K. Mishra and B. Mulgrew, “Automatic target recognition” in Encyclopedia of Aerospace Engineering, R. Blockley and W. Shyy, Eds. Chichester, UK: John Wiley & Sons, Ltd, 2010, p. eae281. doi: 10.1002/9780470686652.eae281. Open DOISearch in Google Scholar

31. T. Praczyk, “Correction of Navigational Information Supplied to Biomimetic Autonomous Underwater Vehicle”, Pol. Marit. Res., vol. 25, no. 1, pp. 13–23, Mar. 2018, doi: 10.2478/pomr-2018-0002. Open DOISearch in Google Scholar

eISSN:
2083-7429
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences