Acceso abierto

Application of the Corrosion Tester in Corrosion Tests Using the Acoustic Emission Method


Cite

1. M. Fahad Sheikh, K. Kamal, F. Rafique, S. Sabir, H. Zaheer, K. Khan, “Corrosion detection and severity level prediction using acoustic emission and machine learning based approach” Ain Shams Engineering Journal, vol. 12, pp. 3891-3903, 2021. doi: https://doi.org/10.1016/j.asej.2021.03.024 Search in Google Scholar

2. C. U. Grosse, M. Othsu, T. Shiotani, D. G. Aggelis, Acoustic Emission Testing: Basics for Research – Applications in Engineering, Springer, 2021.10.1007/978-3-030-67936-1 Search in Google Scholar

3. S. Li, Z. Liang, L. Zhang, “Corrosion evaluation of prestressed high-strength steel wires with impressed current cathodic protection based on acoustic emission technique” Structual Control & Health Monitoring, vol. 31, pp. 1-14, January 2022. doi: https://doi.org/10.1002/stc.2934 Search in Google Scholar

4. L. Calabrese, M. Galeano, E. Proverbio, D. Di Pietro, F. Cappuccini, A. Donato, “Monitoring of 13% Cr martensitic stainless steel corrosion in chloridesolution in presence of thiosulphate by acoustic emission technique” Corr. Science, vol. 111, pp. 151-161, 2016. doi: https://doi.org/10.1016/j.corsci.2016.05.010 Search in Google Scholar

5. H. Tian, X. Wang, Z. Cui, Q. Lua, L. Wang, L. Lei, Y. Li, D. Zhang, “Electrochemical corrosion, hydrogen permeation and stress corrosion cracking behavior of E690 steel in thiosulfate-containing artificial seawater” Corr. Science, vol. 144, pp. 145-162, Nov. 2018. doi: https://doi.org/10.1016/j.corsci.2018.08.048 Search in Google Scholar

6. J. Kovac, A. Legat, B. Zajec, T. Kosec, E. Govekar, “Detection and characterisation of stainless steel SCC by the analysis of crack related acoustic emission” Ultrasonics, vol. 62, pp. 312-322, Sept. 2015. doi: https://doi.org/10.1016/j.ultras.2015.06.00526112425 Search in Google Scholar

7. D. Li, W. Yang, W. Zhang, “Cluster analysis of stress corrosion mechanisms for steel wires used in bridge cables through acoustic emission particle swarm optimization” Ultrasonics, vol. 77, pp. 23-31, May. 2017. doi: https://doi.org/10.1016/j.ultras.2017.01.01228167317 Search in Google Scholar

8. C. Jirarungsatian, A. Prateepasen, “Pitting and uniform corrosion source recognition using acoustic emission parameters” Corr. Science, vol. 52, pp. 187-197, Jan. 2010. doi: https://doi.org/10.1016/j.corsci.2009.09.001 Search in Google Scholar

9. J. Xu, X. Wu, E.-H. Han, “Acoustic emission response of sensitized 304 stainless steel during intergranular corrosion and stress corrosion cracking” Corr. Science, vol. 73, pp. 262-273, Aug. 2013. doi: https://doi.org/10.1016/j.corsci.2013.04.014 Search in Google Scholar

10. J. Kovac, C. Alaux, T. J. Marrow, E. Govekar, A. Legat, “Correlations of electrochemical noise, acoustic emission and complementary monitoring techniques during intergranular stress-corrosion cracking of austenitic stainless steel” Corr. Science, vol. 52, pp. 2015-2025, Jun. 2010. Doi: https://doi.org/10.1016/j.corsci.2010.02.035 Search in Google Scholar

11. G. Du, J. Li, W.K. Wang, C. Jiang, S.Z. Song, “Detection and characterisation of stress-corrosion cracking on 304 stainless steel by electrochemical noise and acoustic emission techniques” Corr. Science, vol. 53, pp. 2918-2926, Sept. 2011. doi: https://doi.org/10.1016/j.corsci.2011.05.030 Search in Google Scholar

12. M. Breimesser, S. Ritter, H.-P. Seifert, S. Virtanen, T. Suter, “Application of the electrochemical microcapillary technique to study intergranular stress corrosion cracking of austenitic stainless steel on the micrometre scale” Corr. Science, vol. 55, pp. 126-132, Feb. 2012. Doi: https://doi.org/10.1016/j.corsci.2011.10.011 Search in Google Scholar

13. A.A. Oskuie, T. Shahrabi, A. Shahriari, E. Saebnoori, “Electrochemical impedance spectroscopy analysis of X70 pipeline steel stress corrosion cracking in high pH carbonate solution” Corr. Science, vol. 61, pp. 111-122, Aug. 2012. doi: https://doi.org/10.1016/j.corsci.2012.04.024 Search in Google Scholar

14. K. Wu, J.-W. Byeon, “Morphological estimation of pitting corrosion on vertically positioned 304 stainless steel using acoustic-emission duration parameter” Corr. Science, vol. 148, pp. 331-337, Mar. 2019. doi: https://doi.org/10.1016/j.corsci.2018.12.031 Search in Google Scholar

15. M. Breimesser, S. Ritter, H.-P. Seifert, T. Suter, S. Virtanen, “Application of electrochemical noise to monitor stress corrosion cracking of stainless steel in tetrathionate solution under constant load” Corr. Science, vol. 63, pp. 129-139, Oct. 2012. doi: https://doi.org/10.1016/j.corsci.2012.05.017 Search in Google Scholar

16. L. Calabrese, G. Campanella, E. Proverbio, “Identification of corrosion mechanisms by univariate and multivariate statistical analysis during long term acoustic emission monitoring on a pre-stressed concrete beam” Corr. Science, vol. 73, pp. 161-171, Aug. 2013. doi: https://doi.org/10.1016/j.corsci.2013.03.032 Search in Google Scholar

17. I. Baran, “Acoustic Emission (AE) - AE Method of technical devices testing,” Institute of Fundamental Technological Research, XXV non-destructive material testing seminar, Zakopane Mar. 20-22, 2019. doi: 10.26357/BNiD.2019.017 Open DOISearch in Google Scholar

18. F. Delaunois, A. Tshimombo, V. Stanciu, V. Vitry, “Monitoring of chloride stress corrosion cracking of austenitic stainless steel: identification of the phases of the corrosion process and use of a modified accelerated test” Corr. Science, vol. 110, pp. 273-283, Sept. 2016. doi: https://doi.org/10.1016/j.corsci.2016.04.038 Search in Google Scholar

19. Z. Zhanga, X. Wu, J. Tan, “In-situ monitoring of stress corrosion cracking of 304 stainless steel in high temperature water by analyzing acoustic emission waveform” Corr. Science, vol. 146, pp. 90-98, Jan. 2019. doi: https://doi.org/10.1016/j.corsci.2018.10.022 Search in Google Scholar

20. Z. Zhang, Z. Zhang, J. Tan, X. Wu, “Quantitatively related acoustic emission signal with stress corrosion crack growth rate of sensitized 304 stainless steel in high-temperature water” Corr. Science, vol. 157, pp. 79-86, Aug. 2019. Doi: https://doi.org/10.1016/j.corsci.2019.05.030 Search in Google Scholar

21. J. Cuadra, P.A.Vanniamparambil, D.Servansky, I.Bartoli, A.Kontsos, “Acoustic emission source modeling using a data-driven approach” Journal of Sound and Vibration, vol. 341, pp. 222–236, Apr. 2015. doi: https://doi.org/10.1016/j.jsv.2014.12.021 Search in Google Scholar

22. K. He, Z. Xia, Y. Si, Q. Lu, Y. Peng, “Noise Reduction of Welding Crack AE Signal Based on EMD and Wavelet Packet” Sensors, vol. 20, pp. 761-773, Jan. 2020. doi: https://doi.org/10.3390/s20030761703847432019131 Search in Google Scholar

23. L. Calabrese, M. Gleano, E. Proveribbio, D.Di Pietro, A. Donato, F. Cappuccini, “Advenced signal analysis applied to discriminate different corrosion forms by acoustic emission data” 32Th Conference on Acoustic Emission Testing, Prague 2016. [Online]. Available: https://www.ndt.net/article/ewgae2016/papers/65_paper.pdf Search in Google Scholar

24. Rules for the Classification and Construction of Naval Ships part IX: Materials and Welding, Polish Register of Shipping, 2021 Search in Google Scholar

25. Y. Zheng, Y. Zhou, Y. Zhou, T. Pan, L. Sun, D. Liu, “Localized corrosion induced damage monitoring of large-scale RC piles using acoustic emission technique in the marine environment” Construction and Building Materials, vol. 243, pp. 1-17, May. 2020. doi: https://doi.org/10.1016/j.conbuildmat.2020.118270 Search in Google Scholar

26. K. Emilianowicz, “Monitoring of underdeck corrosion by using acoustic emission method” Polish Maritime Research, vol. 81, pp. 54-61, Mar. 2014. doi: https://doi.org/10.2478/pomr-2014-0008 Search in Google Scholar

eISSN:
2083-7429
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences