Acceso abierto

Influence of Material Thickness on the Ductile Fracture of Steel Plates for Shipbuilding


Cite

1. A. Griffith, ‘The phenomena of rupture and flow in solids’, Philosophical Transactions, vol. 221, pp. 163–198, 1920.10.1098/rsta.1921.0006 Search in Google Scholar

2. A. Wells, ‘Application of fracture mechanics at and beyond general yield, Report No. M13/63’, British Welding Journal, pp. 563–590, 1963. Search in Google Scholar

3. J. R. Rice, ‘A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks’, J Appl Mech, vol. 35, no. 2, pp. 379–386, Jun. 1968, doi: 10.1115/1.3601206. Open DOISearch in Google Scholar

4. W. Dahl and P. Langenberg, ‘Fracture Toughness of Metallic Materials’, in Encyclopaedia of Materials: Science and Technology (Second Edition), 2001, pp. 3336–3340.10.1016/B0-08-043152-6/00596-9 Search in Google Scholar

5. DNV, RULES FOR CLASSIFICATION, Ships, Part 2 Materials and welding, Chapter 1 General requirements for materials and fabrication. DNV AS, 2022. Search in Google Scholar

6. Standards Norway, NORSOK STANDARD M-101, Structural steel fabrication, 5th ed. Lysaker, 2011. Search in Google Scholar

7. DNV, DNV OFFSHORE STANDARDS, DNV-OS-B101, Metallic materials. DNV AV, 2021. [Online]. Available: https://rules.dnv.com/docs/pdf/DNV/OS/2021-07/DNVOS-B101.pdf Search in Google Scholar

8. Polski Rejestr Statków, Rules For Classification and Construction on sea-going ships, Part IX, Materials and Welding. Gdańsk: PRS, 2021. [Online]. Available: https://www.prs.pl/uploads/mor_p9.pdf Search in Google Scholar

9. BSI, BS 7448-1:1991 - Fracture mechanics toughness tests. Method for determination of KIc, critical CTOD and critical J values of metallic materials. London: BSI, 1991. Search in Google Scholar

10. ASTM International, ‘ASTM E1820 - 18a Standard Test Method for Measurement of Fracture Toughness’, 2018. Search in Google Scholar

11. ISO, ISO 12135:2016 Metallic materials — Unified method of test for the determination of quasistatic fracture toughness. Geneva, 2016. Search in Google Scholar

12. P. L. Moore and A. M. Crintea, ‘Single edge notched tension (SENT) testing at low temperatures’, Proceedings of the Biennial International Pipeline Conference, IPC, vol. 3, 2016, doi: 10.1115/IPC201664021. Open DOISearch in Google Scholar

13. A. Neimitz, Mechanika Pękania. Warszawa: Wydawnictwo Naukowe PWN, 1998. Search in Google Scholar

14. T. Kawabata, T. Tagawa, T. Sakimoto, Y. Kayamori, M. Ohata, Y. Yamashita, E. Tamura, H. Yoshinari, S. Aihara, F. Minami, H. Mimura, Y. Hagihara, ‘Proposal for a new CTOD calculation formula’, Eng Fract Mech, vol. 159, pp. 16–34, 2016, doi: 10.1016/j.engfracmech.2016.03.019. Open DOISearch in Google Scholar

15. W. L. Khor, ‘A CTOD equation based on the rigid rotational factor with the consideration of crack tip blunting due to strain hardening for SEN(B)’, Fatigue Fract Eng Mater Struct, vol. 42, no. 7, pp. 1622–1630, Jul. 2019, doi: 10.1111/ffe.13005. Open DOISearch in Google Scholar

16. F. C. Campbell, ‘Fatigue and Fracture: Understanding the Basics’. 2012.10.31399/asm.tb.ffub.9781627083034 Search in Google Scholar

17. J. Morrison and J. P. Gough, ‘Specimen size and orientation effects on the toughness of steel weldments’, Journal of Engineering Materials and Technology, Transactions of the ASME, vol. 111, no. 3, pp. 270–277, 1989, doi: 10.1115/1.3226466. Open DOISearch in Google Scholar

18. M. Palombo, S. Sandon, and M. de Marco, ‘An Evaluation of Size Effect in CTOD-SENB Fracture Toughness Tests’, Procedia Eng, vol. 109, pp. 55–64, 2015, doi: 10.1016/j.proeng.2015.06.207. Open DOISearch in Google Scholar

19. J. Kowalski and J. Kozak, ‘The Effect of Notch Depth on CTOD Values in Fracture Tests of Structural Steel Elements’, Polish Maritime Research, vol. 25, no. 2, 2018, doi: 10.2478/pomr-2018-0058. Open DOISearch in Google Scholar

20. J. Kowalski, ‘Experimental and Numerical Investigation on Specimen Geometry Effect on the CTOD Value for VL-E36 Shipbuilding Steel’, Polish Maritime Research, vol. 28, no. 3, 2021, doi: 10.2478/pomr-2021-0038. Open DOISearch in Google Scholar

21. J. Kowalski and J. Kozak, ‘Numerical Model of Plastic Destruction of Thick Steel Structural Elements’, Polish Maritime Research, vol. 25, no. 2, pp. 78–84, 2018, doi: 10.2478/pomr-2018-0057. Open DOISearch in Google Scholar

eISSN:
2083-7429
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences