Acceso abierto

Monitoring the Performance of a Ship’s Main Engine Based on Big Data Technology


Cite

1. B. Qiao, W. He, Y. Tian, Y. Liu, O. Cai, and Y. Li, “Ship emission reduction effect evaluation of air pollution control countermeasures,” Transportation Research Procedia, vol. 25, pp. 3606-3618, 2017, doi: 10.1016/j.trpro.2017.05.325. Open DOISearch in Google Scholar

2. F. Jasper, H. Shinichi et al., “Fourth IMO Greenhouse Gas Study 2020,” International Maritime Organisation (IMO), London, UK, 2020. Search in Google Scholar

3. V. Kuznetsov, B. Dymo, S. Kuznetsova, M. Bondarenko, and A. Voloshyn, “Improvement of the cargo fleet vessels power plants ecological indexes by development of the exhaust gas systems,” Polish Maritime Research, vol. 28, pp. 97-104, 2021, doi: 10.2478/pomr-2021-0009. Open DOISearch in Google Scholar

4. I. Ančić and A. Šestan, “Influence of the required EEDI reduction factor on the CO2 emission from bulk carriers,” Energy Policy, vol. 84, pp. 107-116, 2015, doi: 10.1016/j.enpol.2015.04.031. Open DOISearch in Google Scholar

5. E.K. Hansen, H.B. Rasmussen, and M. Lützen, “Making shipping more carbon-friendly? Exploring ship energy efficiency management plans in legislation and practice,” Energy Research & Social Science, vol. 65, pp. 101459, 2020, doi: 10.1016/j.erss.2020.101459. Open DOISearch in Google Scholar

6. M. Kalajdžić, M. Vasilev, and N. Momčilović, “Power Reduction Considerations for Bulk Carriers with respect to Novel Energy Efficiency Regulations,” Brodogradnja: Teorija i praksa brodogradnje i pomorske tehnike, vol. 73, pp. 79-92, 2022, doi: 10.21278/brod72205. Open DOISearch in Google Scholar

7. L. Fedi, “The Monitoring, Reporting and Verification of Ships’ Carbon Dioxide Emissions: A European Substantial Policy Measure towards Accurate and Transparent Carbon Dioxide Quantification,” Ocean Yearbook Online, vol. 31, pp. 381-417, 2017, doi: 10.1163/22116001-03101015. Open DOISearch in Google Scholar

8. W. Tarełko, “The effect of hull biofouling on parameters characterising ship propulsion system efficiency,” Polish Maritime Research, vol. 21, pp. 27-34, 2014, doi: 10.2478/pomr-2014-0038. Open DOISearch in Google Scholar

9. P. Król, «Hydrodynamic state of art review: rotor–stator marine propulsor systems design,» Polish Maritime Research, vol. 28, pp. 72-82, 2021, doi: 10.2478/pomr-2021-0007. Open DOISearch in Google Scholar

10. P. Puzdrowska, «Diagnostic information analysis of quickly changing temperature of exhaust gas from marine diesel engine. Part i single factor analysis,» Polish Maritime Research, vol. 28, pp. 97-106, 2021, doi: 10.2478/pomr-2021-0052. Open DOISearch in Google Scholar

11. P. Król, “Blade section profile array lifting surface design method for marine screw propeller blade,” Polish Maritime Research, vol. 26, pp. 134-141, 2019, doi: 10.2478/pomr-2019-0075. Open DOISearch in Google Scholar

12. K. Rudzki and W. Tarelko, “A decision-making system supporting selection of commanded outputs for a ship’s propulsion system with a controllable pitch propeller,” Ocean Engineering, vol. 126, pp. 254-264, 2016, doi: 10.1016/j.oceaneng.2016.09.018 Open DOISearch in Google Scholar

13. R. Varbanets, V. Zalozh, A. Shakhov, I. Savelieva, and V. Piterska, “Determination of top dead centre location based on the marine diesel engine indicator diagram analysis,” Diagnostyka, vol. 21, pp. 51-60, 2020, doi: 10.29354/diag/116585. Open DOISearch in Google Scholar

14. S. Park, S. W. Park, S. H. Rhee, S. B. Lee, J. E. Choi, and S. H. Kang, “Investigation on the wall function implementation for the prediction of ship resistance,” International Journal of Naval Architecture and Ocean Engineering, vol. 5, pp. 33-46, 2013, doi: 10.2478/IJNAOE-2013-0116. Open DOISearch in Google Scholar

15. M.B. Samsul, “Blade cup method for cavitation reduction in marine propellers,” Polish Maritime Research, 2021, doi: 10.2478/pomr-2021-0021, doi: 10.2478/pomr-2021-0021. Open DOISearch in Google Scholar

16. M.H. Ghaemi, “Performance and emission modelling and simulation of marine diesel engines using publicly available engine data,” Polish Maritime Research, vol. 28, pp. 63-87, 2021, doi: 10.2478/pomr-2021-0050. Open DOISearch in Google Scholar

17. B.D. Brouer, C.V. Karsten, and D. Pisinger, “Big data optimisation in maritime logistics,” Big data optimisation: Recent developments and challenges. Springer, Cham, vol. 18, pp. 319-344, 2016, doi: 10.1007/978-3-319-30265-2_14. Open DOISearch in Google Scholar

18. X. Zeng and M. Chen, “A Novel Big Data Collection System for Ship Energy Efficiency Monitoring and Analysis Based on BeiDou System,” Journal of Advanced Transportation, vol. 2021, pp.1-10, 2021, doi: 10.1155/2021/9914720. Open DOISearch in Google Scholar

19. I. Zaman, K. Pazouki, R. Norman, S. Younessi, and S. Coleman, “Challenges and opportunities of big data analytics for upcoming regulations and future transformation of the shipping industry,” Procedia engineering, vol. 194, pp. 537-544, 2017, doi: 10.1016/j.proeng.2017.08.182. Open DOISearch in Google Scholar

20. A. Fan, X. Yan, and Q. Yin, “A multisource information system for monitoring and improving ship energy efficiency,” Journal of Coastal Research, vol.32, pp. 1235-1245, 2016, doi: 10.2112/JCOASTRES-D-15-00234.1. Open DOISearch in Google Scholar

21. J. Deng, J. Zeng, S. Mai, B. Jin, B. Yuan, Y. You. S. Lu, and M.Yang, «Analysis and prediction of ship energy efficiency using 6G big data internet of things and artificial intelligence technology,» International Journal of System Assurance Engineering and Management, vol. 12, pp. 824–834, 2021, doi: 10.1007/s13198-021-01116-9. Open DOISearch in Google Scholar

22. T. Niksa-Rynkiewicz, N. Szewczuk-Krypa, A. Witkowska, K. Cpałka, M. Zalasiński, and A. Cader, “Monitoring regenerative heat exchanger in steam power plant by making use of the recurrent neural network,” Journal of Artificial Intelligence and Soft Computing Research, vol. 11, pp. 143-155, 2021, doi: 10.2478/jaiscr-2021-0009. Open DOISearch in Google Scholar

23. A. Witkowska and T. Niksa-Rynkiewicz, «Dynamically positioned ship steering making use of backstepping method and artificial neural networks,» Polish Maritime Research, vol. 25, pp. 5-12, 2018, doi: 10.2478/pomr-2018-0126. Open DOISearch in Google Scholar

24. S. García, J. Luengo, and F. Herrera, “Data preprocessing in data mining,” Cham, Switzerland: Springer International Publishing, vol. 72, pp. 59-139, 2015, doi: 10.1007/978-3-319-10247-4. Open DOISearch in Google Scholar

25. L.P. Perera and B. Mo, “Ship performance and navigation information under high-dimensional digital models,” Journal of Marine Science and Technology, vol. 25(1), pp. 59-139, 2020, doi: 10.1007/978-3-319-10247-4. Open DOISearch in Google Scholar

26. Y. Raptodimos and I. Lazakis, “Using artificial neural network-self-organising map for data clustering of marine engine condition monitoring applications,” Ships and Offshore Structures, vol. 13, pp. 649-656, 2018, doi: 10.1080/17445302.2018.1443694. Open DOISearch in Google Scholar

27. E. Vanem and A. Brandsæter, “Unsupervised anomaly detection based on clustering methods and sensor data on a marine diesel engine,” Journal of Marine Engineering & Technology, vol. 20, pp. 217-234, 2021, doi: 10.1080/20464177.2019.1633223. Open DOISearch in Google Scholar

28. L. P. Perera, and B. Mo, “Data analytics for capturing marine engine operating regions for ship performance monitoring,” International Conference on Offshore Mechanics and Arctic Engineering, American Society of Mechanical Engineers, 2016, Vol. 49989, doi: 10.1115/OMAE2016-54168 Open DOISearch in Google Scholar

29. L. P. Perera, and B. Mo, “Marine engine operating regions under principal component analysis to evaluate ship performance and navigation behaviour,” IFACPapersOnLine, vol. 49(23), pp. 512-517, 2016, doi: 10.1016/j.ifacol.2016.10.487. Open DOISearch in Google Scholar

30. X. Yan, K. Wang, Y. Yuan, X. Jiang, and R. R. Negenborn, “Energy-efficient shipping: An application of big data analysis for optimizing engine speed of inland ships considering multiple environmental factors,” Ocean Engineering, vol. 169, pp. 457-468, 2018, doi: 10.1016/j.oceaneng.2018.08.050. Open DOISearch in Google Scholar

31. K. Wang, X. Yan, Y. Yuan, X. Jiang, G. Lodewijks, and R. R. Negenborn, «Study on route division for ship energy efficiency optimisation based on big environment data,» 2017 4th International Conference on Transportation Information and Safety (ICTIS), IEEE, pp. 111-116, 2017, doi: 10.1109/ICTIS.2017.8047752. Open DOISearch in Google Scholar

32. R. Adland, P. Cariou, H. Jia, and F. C. Wolff, “The energy efficiency effects of periodic ship hull cleaning,” Journal of Cleaner Production, vol. 178, pp. 1–13, 2018, doi: 10.1016/j.jclepro.2017.12.247. Open DOISearch in Google Scholar

33. O. Loyola-Gonzalez, “Black box vs. white-box: Understanding their advantages and weaknesses from a practical point of view, “ IEEE Access, vol. 7, pp. 154096–154113, 2019, doi: 10.1109/ACCESS.2019.2949286. Open DOISearch in Google Scholar

34. X. Zeng, M. Chen, H. Li and X. Wu, “A Data-Driven Intelligent Energy Efficiency Management System for Ships,” IEEE Intelligent Transportation Systems Magazine, doi: 10.1109/MITS.2022.3153491. Open DOISearch in Google Scholar

35. M. Ester, H. P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for discovering clusters in large spatial databases with noise,” kdd, vol. 96, pp. 226-231, 1996. Search in Google Scholar

36. R. Varbanets, V. Klymenko, O. Fomin, V. Píštěk, P. Kučera, D. Minchev, A. Khrulev, and V. Zalozh, “Acoustic method for estimation of marine low-speed engine turbocharger parameters,” Journal of Marine Science and Engineering, vol. 9, 2021, doi: 10.3390/jmse9030321. Open DOISearch in Google Scholar

37. A. GéRon, “Hands-on Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems”. Sebastopol, CA, USA: O’Reilly Media, 2017. Search in Google Scholar

eISSN:
2083-7429
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences