Acceso abierto

Investigation of the Characteristics of a Low-Emission Gas Turbine Combustion Chamber Operating on a Mixture of Natural Gas and Hydrogen


Cite

1. Hydrogen gas turbines. The path towards a zero-carbon gas turbine, ETN Global Report 2020. Available: https://etn.global/wp-content/uploads/2020/02/ETN-Hydrogen-Gas-Turbines-report.pdf, 2020. Search in Google Scholar

2. M. Nose, T. Kawakami, H. Araki, N. Senba, and S. Tanimura, “Hydrogen-fired Gas Turbine Targeting Realization of CO2-free Society. Mitsubishi Heavy Industries Technical Review,” Available: https://www.mhi.co.jp/technology/review/pdf/e554/e554180.pdf, 2018. Search in Google Scholar

3. J. Beital, M. Talibi, S. Sadasivuni, and R. Balachandran, “Thermoacoustic Instability Considerations for High Hydrogen Combustion in Lean Premixed Gas Turbine Combustors: A Review,” Hydrogen, vol. 2, pp. 33–57, 2021. DOI: https://doi.org/10.3390/hydrogen2010003. Search in Google Scholar

4. N. Tekin, M. Ashikaga, A. Horikawa, and H. Funke, “Enhancement of fuel flexibility of industrial gas turbines by development of innovative hydrogen combustion systems,” Gas for energy, vol. 2, Available: https://www.researchgate.net/publication/332290711_Enhancement_of_fuel_flexibility_of_industrial_gas_turbines_by_development_of_innovative_hydrogen_combustion_systems, 2018. Search in Google Scholar

5. B.S. Soroka, K.E. Pyanykh, V.O. Zgursky, V.V. Gorupa, and V.S. Kudryavtsev, “Energy and environmental characteristics of household gas appliances using methane-hydrogen mixture as a fuel gas,” Oil and gas industry of Ukraine, vol. 6, pp. 3-13, 2020 (In Ukrainian). Search in Google Scholar

6. R. Amaduzzi, M. Ferrarotti, and A. Parente, “Strategies for Hydrogen-Enriched Methane Flameless Combustion in a Quasi-Industrial Furnace,” Frontiers in Energy Research, Available: https://www.frontiersin.org/articles/10.3389/fenrg.2020.590300/full, 2021. DOI: https://doi.org/10.3389/fenrg.2020.590300. Search in Google Scholar

7. A. Cappellettia, F. Martellia, E. Bianchib, and E. Trifonic, “Numerical redesign of 100kw MGT combustor for 100% H2 fueling,” Energy Procedia, vol. 45, pp. 1412-1421, 2014. DOI: https://doi.org/10.1016/j.egypro.2014.01.148. Search in Google Scholar

8. S. Barati1, L. De Santoli1, and G. Lo Basso1, “Modelling and Analysis of a Micro Gas Turbine Fuelled with Hydrogen and Natural Gas Blends,” E3S Web of Conferences, vol. 312, 08012, pp. 1-13, 2021. DOI: https://doi.org/10.1051/e3sconf/202131208012. Search in Google Scholar

9. A.H. Ayed, K. Kusterer, H.H.W. Funke, J. Keinz, and D. Bohn, “CFD based exploration of the dry-low-NOx hydrogen micromix combustion technology at increased energy densities,” Propulsion and Power Research, vol. 6(1), pp. 15-24, 2017. DOI: https://doi.org/10.1016/j.jppr.2017.01.005. Search in Google Scholar

10. A.H. Ayed, K. Kusterer, H.H.W. Funke, and J. Keinz, “CFD Based Improvement of the DLN Hydrogen Micromix Combustion Technology at Increased Energy Densities,” American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS), vol. 26(3), pp. 290-303, 2016. Search in Google Scholar

11. V. Vilag, J. Vilag, R. Carlanescu, A. Mangra, and F. Florean, “CFD Application for Gas Turbine Combustion Simulations,” Edited by G. Ji and J. Zhu, Available: https://www.intechopen.com/chapters/69672, 2019.10.5772/intechopen.89759 Search in Google Scholar

12. S. Reza, M. Rahimi, A. Khoshhal, and A.A. Alsairafi, “CFD Study on Hydrogen-Air Premixed Combustion in a Micro Scale Chamber,” Iran. J. Chem. Chem. Eng, vol. 29(4), pp. 161-172, 2010. DOI: 10.30492/IJCCE.2010.6419. Open DOISearch in Google Scholar

13. P. Gobbato, M. Masi, A. Toffolo, and A. Lazzaretto, “Numerical simulation of a hydrogen fuelled gas turbine combustor,” International Journal of Hydrogen Energy, vol. 36, pp. 7993-8002, 2011. DOI: https://doi.org/10.1016/j.ijhydene.2011.01.045. Search in Google Scholar

14. M.E.H. Attia, A. Khechekhouche, and Z. Driss, “Numerical Simulation of Methane-Hydrogen Combustion in the Air: Influence on Combustion Parameters,” Indian Journal of Science and Technology, vol. 11(2), pp. 1-8, 2018. DOI: 10.17485/ijst/2018/v11i2/120608. Open DOISearch in Google Scholar

15. S.I. Serbin, A.V. Kozlovskyi, and K.S. Burunsuz, “Investigations of non-stationary processes in low emissive gas turbine combustor with plasma assistance,” IEEE Trans. Plasma Sci., vol 44(12), pp. 2960-2964, 2016. DOI: 10.1109/TPS.2016.2607461. Open DOISearch in Google Scholar

16. B.E. Launder, and D.B. Spalding, “Lectures in Mathematical Models of Turbulence,” London: Academic Press, 1972. Search in Google Scholar

17. I.B. Matveev, S.I. Serbin, V.V. Vilkul, and N.A. Goncharova, “Synthesis Gas Afterburner Based on an Injector Type Plasma-Assisted Combustion System,” IEEE Trans. Plasma Sci., vol. 43(12), pp. 3974-3978, 2015. DOI: 10.1109/TPS.2015.2475125. Open DOISearch in Google Scholar

18. I.B. Matveev, and S.I. Serbin, “Theoretical and experimental investigations of the plasma-assisted combustion and reformation system,” IEEE Trans. Plasma Sci., vol. 38(12), pp. 3306-3312, 2010. DOI: 10.1109/TPS.2010.2063713. Open DOISearch in Google Scholar

19. I.B. Matveev, S.I. Serbin, and N.V. Washchilenko, “Plasma-assisted treatment of sewage sludge,” IEEE Trans. Plasma Sci., vol. 44 (12), pp. 3023-3027, 2016. DOI: 10.1109/TPS.2016.2604849. Open DOISearch in Google Scholar

20. I. Matveev, S. Serbin, and S.M. Lux, “Efficiency of a hybrid-type plasma-assisted fuel reformation system,” IEEE Trans. Plasma Sci., vol. 36(6), pp. 2940-2946, 2008. DOI: 10.1109/TPS.2008.2006843. Open DOISearch in Google Scholar

21. B.F. Magnussen, and B.H. Hjertager, “On mathematical models of turbulent combustion with special emphasis on soot formation and combustion,” 16th Symp. (Int.) on Combustion. The Combustion Institute, vol. 16(1), pp. 719-729, 1977.10.1016/S0082-0784(77)80366-4 Search in Google Scholar

22. V. Yakhot, and S.A. Orszag, “Renormalization Group Analysis of Turbulence: I. Basic Theory.” Journal of Scientific Computing, vol. 1(1), pp. 1-51, 1986.10.1007/BF01061452 Search in Google Scholar

23. B.F. Magnussen, “On the Structure of Turbulence and a Generalized Eddy Dissipation Concept for Chemical Reaction in Turbulent Flow,” American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, pp. 1-7, 1981.10.2514/6.1981-42 Search in Google Scholar

24. I.R. Gran, and B.F. Magnussen, “A numerical study of a bluff-body stabilised diffusion flame. Part 2. Influence of combustion modelling and finite-rate chemistry,” Combustion Science and Technology, vol. 119 (1-6), pp. 191-217, 1996. DOI: https://doi.org/10.1080/00102209608951999. Search in Google Scholar

25. R. Meloni, “Pollutant Emission Validation of a Heavy-Duty Gas Turbine Burner by CFD Modelling,” Machines, vol. 2, pp. 81-97, 2013. DOI: https://doi.org/10.3390/machines1030081. Search in Google Scholar

26. “ANSYS Fluent Theory Guide,” ANSYS, Inc., pp. 1-780, 2013. Search in Google Scholar

27. Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control), Available: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32010L0075, 2010. Search in Google Scholar

28. O. Cherednichenko, S. Serbin, and M. Dzida, “Application of thermo-chemical technologies for conversion of associated gas in diesel-gas turbine installations for oil and gas floating units,” Polish Maritime Research, vol. 3(103), pp. 181-187, 2019. DOI: https://doi.org/10.2478/pomr-2019-0059. Search in Google Scholar

eISSN:
2083-7429
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences