Acceso abierto

Analysis of Marine Risers Subjected to Shoal/Deep Water in the Installation Process


Cite

1. Y. Wang, L. Wang, Q. Ni, M. Yang, D. Liu, T. Qin (2021): Non-smooth dynamics of articulated pipe conveying fluid subjected to a one-sided rigid stop. Applied Mathematical Modelling, Vol. 89, 802-818.10.1016/j.apm.2020.08.020 Search in Google Scholar

2. L. Mao, S. Zeng, Q. Liu (2019): Dynamic analysis of soft hang-off riser in deep water, coupling the vibration of lateral and longitudinal directions. Current Science, Vol. 116(9), 1533-1543.10.18520/cs/v116/i9/1533-1543 Search in Google Scholar

3. J. M. Cabrera-Miranda, J. K. Paik (2017): On the probabilistic distribution of loads on a marine riser. Ocean Engineering, Vol. 134, 105-118.10.1016/j.oceaneng.2017.01.025 Search in Google Scholar

4. M. Szczotka (2011): Dynamic analysis of an offshore pipe laying operation using the reel method. Acta Mechanica Sinica, Vol. 27(1), 44-55.10.1007/s10409-011-0400-9 Search in Google Scholar

5. Y. Zhu. Ocean engineering wave mechanics. Tianjin University Press, 1991. Search in Google Scholar

6. Y. Wang, D. Gao, J. Fang (2015): Mechanical behavior analysis for the determination of riser installation window in offshore drilling. Journal of Natural Gas Science and Engineering, Vol. 24, 317-323.10.1016/j.jngse.2015.03.044 Search in Google Scholar

7. W. He, S. Zhang, S. S. Ge (2013): Boundary control of a flexible riser with the application to marine installation. IEEE Transactions on Industrial Electronics, Vol. 60(12), 5802-5810.10.1109/TIE.2013.2238873 Search in Google Scholar

8. Y. Wang, D. Gao, J. Fang (2015): Study on lateral vibration analysis of marine riser in installation-via variational approach. Journal of Natural Gas Science and Engineering, Vol. 22, 523-529.10.1016/j.jngse.2014.12.012 Search in Google Scholar

9. S. K. Chakrabarti (1972): Nonlinear wave forces on vertical cylinder. Journal of the Hydraulics Division, Vol. 98, 1-11.10.1061/JYCEAJ.0003468 Search in Google Scholar

10. E. Wang (1983): Analysis of two 13,200-ft riser systems using a three-dimensional riser program. In: Proceedings of the Offshore Technology Conference, Houston, Texas, USA, 1983.10.4043/4563-MS Search in Google Scholar

11. W. Azpiazu, M. Thatcher, E. Schwelm (1983): Heave compensation systems: analysis and results of field testing. In: Proceedings of the Offshore Technology Conference, Houston, Texas, USA, 1983.10.4043/4561-MS Search in Google Scholar

12. W. Azpiazu, V. Nguyen (1984): Vertical dynamics of marine risers. In: Proceedings of the Offshore Technology Conference, Houston, Texas, USA, 1984.10.4043/4738-MS Search in Google Scholar

13. A. Trim (1991): Axial dynamics of deep water risers. In: Proceedings of the The First International Offshore and Polar Engineering Conference, Edinburgh, The United Kingdom, 1991. Search in Google Scholar

14. C. Johnson, J. Roesset (1992). Axial-bending coupling effects on the dynamic response of deep water risers. In: Proceedings of the The Second International Offshore and Polar Engineering Conference, San Francisco, California, USA, 1992. Search in Google Scholar

15. R. Burrows, R. Tickell, D. Hames, G. Najafian (1997): Morison wave force coefficients for application to random seas. Applied Ocean Research, Vol. 19(3), 183-199.10.1016/S0141-1187(97)00023-0 Search in Google Scholar

16. G. Moe, B. Larsen (1997): Dynamics of deep water marine risers - asymptotic solutions. In: Proceedings of the The Seventh International Offshore and Polar Engineering Conference, Honolulu, Hawaii, USA, 1997. Search in Google Scholar

17. E. Kogure, M. Ohashi, S. Urabe, A. Tanabe (1998): Applications of a near surface disconnectable drilling riser in deepwater. In: Proceedings of the IADC/SPE Asia Pacific Drilling Technology, Jakarta, Indonesia, 1998.10.2118/47828-MS Search in Google Scholar

18. M. H. Patel, F. B. Seyed (1995): Review of flexible riser modelling and analysis techniques. Engineering Structures, Vol. 17(4), 293-304.10.1016/0141-0296(95)00027-5 Search in Google Scholar

19. C. Athisakul, T. Huang, S. Chucheepsakul (2002): Large strain static analysis of marine risers via a variational approach. Proceedings of the Twelfth International Offshore and Polar Engineering Conference, Kitakyushu, Japan, 2002. Search in Google Scholar

20. M. Yazdchi, M. Crisfield (2002): Non-linear dynamic behaviour of flexible marine pipes and risers. International Journal for Numerical Methods in Engineering, Vol. 54(9), 1265-1308.10.1002/nme.566 Search in Google Scholar

21. W. Raman-Nair, E. Baddour (2003): Three-dimensional dynamics of a flexible marine riser undergoing large elastic deformations. Multibody System Dynamics, Vol. 10, 393-423.10.1023/A:1026213630987 Search in Google Scholar

22. L. Mathelin, E. de Langre (2005): Vortex-induced vibrations and waves under shear flow with a wake oscillator model. European Journal of Mechanics - B/Fluids, Vol. 24(4), 478-490.10.1016/j.euromechflu.2004.12.005 Search in Google Scholar

23. I. K. Chatjigeorgiou (2008): A finite differences formulation for the linear and nonlinear dynamics of 2D catenary risers. Ocean Engineering, Vol. 35(7), 616-636.10.1016/j.oceaneng.2008.01.006 Search in Google Scholar

24. W. Dai, F. Gao, Y. Bai (2009): FEM analysis of deepwater drilling risers under the operability and hang-off working conditions. Journal of Marine Science and Application, Vol. 8(2), 156-162.10.1007/s11804-009-8114-0 Search in Google Scholar

25. S. T. Santillan, L. N. Virgin, R. H. Plaut (2010): Static and dynamic behavior of highly deformed risers and pipelines. Journal of Offshore Mechanics and Arctic Engineering, Vol. 132(2), 021401.10.1115/1.4000555 Search in Google Scholar

26. S. S. Ge, W. He, B. V. E. How, Y. S. Choo (2010): Boundary control of a coupled nonlinear flexible marine riser. IEEE Transactions on Control Systems Technology, Vol. 18(5), 1080-1091.10.1109/TCST.2009.2033574 Search in Google Scholar

27. W. He, X. He, S. S. Ge (2016): Vibration control of flexible marine riser systems with input saturation. IEEE/ASME Transactions on Mechatronics, Vol. 21(1), 254-265.10.1109/TMECH.2015.2431118 Search in Google Scholar

28. P. Ma, W. Qiu, D. Spencer (2014): Numerical vortex-induced vibration prediction of marine risers in time-domain based on a forcing algorithm. Journal of Offshore Mechanics and Arctic Engineering, Vol. 136(3), 031703.10.1115/1.4027385 Search in Google Scholar

29. Y. Wang, D. Gao, J. Fang (2014): Axial dynamic analysis of marine riser in installation. Journal of Natural Gas Science and Engineering, Vol. 21, 112-117.10.1016/j.jngse.2014.07.031 Search in Google Scholar

30. Y. Wang, D. Gao, J. Fang (2014): Static analysis of deep-water marine riser subjected to both axial and lateral forces in its installation. Journal of Natural Gas Science and Engineering, Vol. 19, 84-90.10.1016/j.jngse.2014.04.019 Search in Google Scholar

31. Y. Wang, D. Gao, J. Fang (2015): Study on lateral nonlinear dynamic response of deepwater drilling riser with consideration of the vessel motions in its installation. Tech Science Press, Vol. 48(1), 57-75. Search in Google Scholar

32. Y. Hu, B. Yao, Z. Zheng, L. Lian (2016): Research on marine riser in different installations stages of subsea production tree. In: Proceedings of the OCEANS 2016-Shanghai, Shanghai, China, 2016: 1-7. Search in Google Scholar

33. X. Chang, J. Fan, W. Yang, Y. Li, R. Kolahchi (2021): In-line and cross-flow coupling vibration response characteristics of a marine viscoelastic riser subjected to two-phase internal flow. Shock and Vibration, Vol. 2021, 1-27.10.1155/2021/7866802 Search in Google Scholar

34. M. Liu, Y. Wang, T. Qin, J. Zhao, Y. Du (2021): Nonlinear dynamics of cross-flow tubes subjected to initial axial load and distributed impacting constraints. Shock and Vibration, Vol. 2021, 1-15.10.1155/2021/2359090 Search in Google Scholar

35. Y. Chang, G. Chen, L. Xu, H. Wang (2007): Nonlinear dynamic analysis of deep pipe-in-pipe steel catenary riser. China Offshore Oil and Gas, Vol. 3(19), 203-206. Search in Google Scholar

36. Q. Ni, Y. K. Wang, M. Tang, Y. Y. Luo, H. Yan, L. Wang (2015): Nonlinear impacting oscillations of a fluid-conveying pipe subjected to distributed motion constraints. Nonlinear Dynamics, Vol. 81(1-2), 893-906.10.1007/s11071-015-2038-9 Search in Google Scholar

37. Det Norske Veritas (2000): Offshore standard DNV-OS-F101. Submarine pipeline systems, 45-78. Search in Google Scholar

eISSN:
2083-7429
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences