Acceso abierto

An Adaptive Island Model of Population for Neuroevolutionary Ship Handling


Cite

1. D. Whitley, S. Rana, and R. Heckendorn, “The Island Model Genetic Algorithm: On Separability, Population Size and Convergence,” Journal of Computing and Information Technology, vol. 7, 1998. Search in Google Scholar

2. H. M. Pandey, A. Chaudhary, and D. Mehrotra, “A comparative review of approaches to prevent premature convergence in GA,” Applied Soft Computing, vol. 24, pp. 1047–1077, 2014, doi: https://doi.org/10.1016/j.asoc.2014.08.025.10.1016/j.asoc.2014.08.025 Search in Google Scholar

3. E. Alba and J. M. Troya, “An analysis of synchronous and asynchronous parallel distributed genetic algorithms with structured and panmictic Islands,” in Parallel and Distributed Processing, Berlin, Heidelberg, 1999, pp. 248–256.10.1007/BFb0097906 Search in Google Scholar

4. A. Hoang et al., “A review on application of artificial neural network (ANN) for performance and emission characteristics of diesel engine fueled with biodiesel-based fuels,” Sustainable Energy Technologies and Assessments, Jun. 2021, doi: 10.1016/j.seta.2021.101416.10.1016/j.seta.2021.101416 Search in Google Scholar

5. S. L. Boung Yew and K. K. Kee, “Artificial Neural Network Back-Propagation Based Decision Support System for Ship Fuel Consumption Prediction,” 2018. doi: 10.1049/cp.2018.1306.10.1049/cp.2018.1306 Search in Google Scholar

6. W. Tarełko and K. Rudzki, “Applying artificial neural networks for modelling ship speed and fuel consumption,” Neural Computing & Applications, vol. 32, pp. 17379–17395, 2020. doi: 10.1007/s00521-020-05111-210.1007/s00521-020-05111-2 Search in Google Scholar

7. J. Liu, G. Shi, and K. Zhu, “Vessel Trajectory Prediction Model Based on AIS Sensor Data and Adaptive Chaos Differential Evolution Support Vector Regression (ACDE-SVR),” Applied Sciences, vol. 9, p. 2983, 2019, doi: 10.3390/app9152983.10.3390/app9152983 Search in Google Scholar

8. K. Bobkowska and I. Bodus-Olkowska Izabela, “Potential and Use of the Googlenet Ann for the Purposes of Inland Water Ships Classification,” Polish Maritime Research, vol. 27, pp. 170–178, 2020. doi: 10.2478/pomr-2020-007710.2478/pomr-2020-0077 Search in Google Scholar

9. G. Li, B. Kawan, H. Wang, and H. Zhang, “Neural-network-based modelling and analysis for time series prediction of ship motion,” Ship Technology Research, vol. 64, 2017, doi: 10.1080/09377255.2017.1309786.10.1080/09377255.2017.1309786 Search in Google Scholar

10. T. Niksa-Rynkiewicz and A. Witkowska, “Analysis of impact of ship model parameters on changes of control quality index in ship dynamic positioning system,” Polish Maritime Research, vol. 26, no. 1(101), pp. 6–14, 2019. doi: 10.2478/pomr-2019-000110.2478/pomr-2019-0001 Search in Google Scholar

11. J. Lisowski, “Computational Intelligence in Marine Control Engineering Education,” Polish Maritime Research, vol. 28, no. 1, pp. 163–172, 2021, doi:10.2478/pomr-2021-0015.10.2478/pomr-2021-0015 Search in Google Scholar

12. R. Lopes, R. Pedrosa Silva, F. Campelo, and F. Guimarães, “A Multi-agent Approach to the Adaptation of Migration Topology in Island Model Evolutionary Algorithms,” in Proceedings - Brazilian Symposium on Neural Networks, SBRN, 2012, pp. 160–165. doi: 10.1109/SBRN.2012.36.10.1109/SBRN.2012.36 Search in Google Scholar

13. P. García-Sánchez, J. Ortega, J. González, P. A. Castillo, and J. J. Merelo, “Distributed multi-objective evolutionary optimization using island-based selective operator application,” Applied Soft Computing, vol. 85, p. 105757, 2019, doi: https://doi.org/10.1016/j.asoc.2019.105757.10.1016/j.asoc.2019.105757 Search in Google Scholar

14. E. Cantú-Paz and D. E. Goldberg, “Are Multiple Runs of Genetic Algorithms Better than One?,” in Genetic and Evolutionary Computation — GECCO 2003, Berlin, Heidelberg, 2003, pp. 801–812.10.1007/3-540-45105-6_94 Search in Google Scholar

15. R. Śmierzchalski, Ł. Kuczkowski, P. Kolendo, and B. Jaworski, “Distributed Evolutionary Algorithm for Path Planning in Navigation Situation,” TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, vol. 7, pp. 293–300, 2013, doi: 10.12716/1001.07.02.17.10.12716/1001.07.02.17 Search in Google Scholar

16. A. Skakovski and P. Jędrzejowicz, “An island-based differential evolution algorithm with the multi-size populations,” Expert Systems with Applications, vol. 126, pp. 308–320, 2019, doi: https://doi.org/10.1016/j.eswa.2019.02.027.10.1016/j.eswa.2019.02.027 Search in Google Scholar

17. J. Szlapczynska and R. Szlapczynski, “Preference-based evolutionary multi-objective optimization in ship weather routing,” Applied Soft Computing, vol. 84, p. 105742, 2019, doi: https://doi.org/10.1016/j.asoc.2019.105742.10.1016/j.asoc.2019.105742 Search in Google Scholar

18. L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement Learning: A Survey,” Journal of Artificial Intelligence Research, vol. cs.AI/9605, pp. 237–285, 1996, doi: 10.1613/jair.301.10.1613/jair.301 Search in Google Scholar

19. R. Maeda and M. Mimura, “Automating post-exploitation with deep reinforcement learning,” Computers & Security, vol. 100, p. 102108, 2021, doi: https://doi.org/10.1016/j.cose.2020.102108.10.1016/j.cose.2020.102108 Search in Google Scholar

20. R. De Nardi, J. Togelius, O. E. Holland, and S. M. Lucas, “Evolution of Neural Networks for Helicopter Control: Why Modularity Matters,” Evolutionary Computation, 2006. CEC 2006. IEEE Congress on, pp. 1799–1806, 2006, doi: citeulike-article-id:4142097. Search in Google Scholar

21. N. T. Siebel and G. Sommer, “Evolutionary reinforcement learning of artificial neural networks,” International Journal of Hybrid Intelligent Systems - Hybridization of Intelligent Systems, vol. 4, pp. 171–183, 2007.10.3233/HIS-2007-4304 Search in Google Scholar

22. K. O. Stanley and M. Risto, “Efficient Reinforcement Learning Through Evolving Neural Network Topologies,” presented at the Proceedings of the Genetic and Evolutionary Computation Conference, 2002. Search in Google Scholar

23. T. I. Fossen, Guidance and control of ocean vehicles. Chichester, UK: Wiley, 1994. Search in Google Scholar

24. R. Zaccone, M. Martelli, and M. Figari, “A COLREG-Compliant Ship Collision Avoidance Algorithm,” Jun. 2019, pp. 2530–2535. doi: 10.23919/ECC.2019.8796207.10.23919/ECC.2019.8796207 Search in Google Scholar

eISSN:
2083-7429
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences