Acceso abierto

Diagnostic Information Analysis of Quickly Changing Temperature of Exhaust Gas from Marine Diesel Engine Part I Single Factor Analysis


Cite

1. Dahlström J., Experimental Investigations of Combustion Chamber Heat Transfer in a Light-Duty Diesel Engine. 2016. Lund University. Thesis for the degree of Doctor of Technology. Search in Google Scholar

2. Debnath, B.K., Sahoo, N. and Saha, U. K., ‘Thermodynamic analysis of variable compression ratio diesel engine running with palm oil methyl ester’, Energy Conversion and Managment, vol. 65, pages 147-154. 2013. doi: 10.1016/j.enconman.2012.07.01610.1016/j.enconman.2012.07.016 Search in Google Scholar

3. Fennell D. A., Exhaust gas fuel reforming for improved gasoline direct injection engine efficiency and emissions. 2014. University of Birmingham. Ph.D. Search in Google Scholar

4. Fuente S.S., Reducing shipping carbon emissions under real operative conditions: a study of alternative marine waste heat recovery systems based on the organic rankine cycle. 2016. Ph.D. Search in Google Scholar

5. Jaremkiewicz M. and Taler, J., ‘Inverse determination of transient fluid temperature in pipelines’ Journal of Power Technologies, 96(6). p. 385-389. 2016. Search in Google Scholar

6. Jaremkiewicz M., Odwrotne zagadnienia wymiany ciepła, występujące w pomiarach nieustalonej temperatury płynów. Rozprawa doktorska. Wydawnictwo Politechniki Krakowskiej. 2011. [‘Inverse heat transfer issues occurring in transient fluid temperature measurements’. PhD dissertation.] Search in Google Scholar

7. Korczewski Z. and Puzdrowska P., ‘Analytical method of determining dynamic properties of thermocouples used in measurements of quick – changing temperatures of exhaust gases in marine diesel engines’ Combustion Engines, nr 162 (3), s. 300-306. 2015. Search in Google Scholar

8. Korczewski Z. and Zacharewicz M., ‘Alternative diagnostic method applied on marine diesel engines having limited monitoring susceptibility’ Transactions of the Institute of Measurement and Control, 34 (8), p. 937-946. 2012. doi: 10.1177/014233121142617010.1177/0142331211426170 Search in Google Scholar

9. Korczewski, Z., Diagnostyka eksploatacyjna okrętowych silników spalinowych – tłokowych i turbinowych. Wybrane zagadnienia. Wydawnictwo Politechniki Gdańskiej. 2017. [‘Operational diagnostics of marine internal combustion engines - piston and turbine engines. Selected issues‘] Search in Google Scholar

10. Korczewski. ‘Test Method for Determining the Chemical Emissions of a Marine Diesel Engine Exhaust in Operation’, Polish Maritime Research, vol. 28, no. 3, 2021, doi: 10.2478/pomr-2021-0035.10.2478/pomr-2021-0035 Search in Google Scholar

11. Korzyński, M., Metodyka eksperymentu. Planowanie, realizacja i statystyczne opracowanie wyników eksperymentów technologicznych. WNT. 2017. [‘Experimental methodology. Planning, execution and statistical processing of results of technological experiments‘] Search in Google Scholar

12. Kowalczyk M., Wybrane zagadnienia wymiany ciepła w silnikach wysokoprężnych - wymiana przez promieniowanie. Wydawnictwo Politechniki Poznańskiej. 2000. [‘Selected heat transfer issues in diesel engines - exchange by radiation‘] Search in Google Scholar

13. Kudrewicz J., Analiza funkcjonalna dla automatyków i elektroników. PWN. 1976. [‘Functional analysis for automation and electronics engineers‘] Search in Google Scholar

14. Linschoten P., Pressure and Temperature Measurements in a Heavy-Duty Diesel Engine. 2018. Master of Science Thesis Search in Google Scholar

15. Llamas X., Modeling and control of EGR on marine two-stroke diesel engines (Vol. 1904). 2018. Linköping University Electronic Press. DOI: 10.3384/diss.diva-14459610.3384/diss.diva-144596 Search in Google Scholar

16. Marszałkowski K. and Puzdrowska P., ‘A laboratory stand for the analysis of dynamic properties of thermocouples’ Journal of Polish CIMEEAC, vol. 10, nr 1 (2015), s. 111 – 120. 2015. Search in Google Scholar

17. Mazur M., Jakościowa teoria informacji. WNT. Warszawa. 1970. [‘Qualitative information theory‘] Search in Google Scholar

18. Mijas, Ł., Reiter, E. and Kukiełka, K., ‘Wykorzystanie systemu ANSYS Workbench do analizy statycznej korbowodów’ Autobusy: technika, eksploatacja, systemy transportowe. Instytut Naukowo-Wydawniczy ‘SPATIUM’ R. 14, nr 10 Str. 315-317. 2013. [‘Using ANSYS Workbench for static analysis of connecting rods’. Buses: technology, operations, transportation systems.] Search in Google Scholar

19. Morey F.and Seers P., ‘Comparison of cycle-by-cycle variation of measured exhaust - gas temperature and in - cylinder pressure measurements’ Applied Thermal Engineering, nr 30, str. 487 - 491. 2010. DOI: 10.1016/j.applthermaleng.2009.10.01110.1016/j.applthermaleng.2009.10.011 Search in Google Scholar

20. Olczyk A., ‘Koncepcja pomiaru szybkozmiennej temperatury gazu z uwzględnieniem dynamicznej składowej temperatury’ Pomiary Automatyka Kontrola, 53 Bis/9, s. 576-579. 2007. [‘A concept for the measurement of rapidly varying gas temperature taking into account the dynamic temperature component’ Measurements Automation Control] Search in Google Scholar

21. Pfriem H., ‘Zur Messung veränderlicher Temperaturen von Gasen Und Flüssigkeiten’ Gen. Ingen., vol. 7, no. 2, pp. 85–92. 1936. [‘For measuring variable temperatures of gases and liquids‘]10.1007/BF02592988 Search in Google Scholar

22. Polanowski S., ‘Studium metod analizy wykresów indykatorowych w aspekcie diagnostyki silników okrętowych’ Zeszyty Naukowe AMW, Nr 69 A. 2007. [‘Study of Indicator Chart Analysis Methods in the Aspect of Marine Engine Diagnostics‘] Search in Google Scholar

23. Polański Z., Planowanie doświadczeń w technice. PWN. 1984. [‘Planning experiments in technology‘] Search in Google Scholar

24. Puzdrowska P., ‘Determining the time constant using two methods and defining the thermocouple response to sine excitation of gas temperature’ Journal of Polish CIMEEAC – vol. 11, nr 1, s. 157 – 167. 2016. Search in Google Scholar

25. Puzdrowska P., ‘Signal filtering method of the fast-varying diesel exhaust gas temperature’ Combustion Engines, nr. 175(4), s.48-52. 2018. doi: 10.19206/CE-2018-40710.19206/CE-2018-407 Search in Google Scholar

26. Puzdrowska, P., ‘Application of the F-statistic of the Fisher-Snedecor distribution to analyze the significance of the effect of changes in the compression ratio of a diesel engine on the value of the specific enthalpy of the exhaust gas flow’ Combustion Engines, 186, 80-88. 2021. doi: 10.19206/CE-14134610.19206/CE-141346 Search in Google Scholar

27. Puzdrowska, P., ‘Evaluation of the significance of the effect of the active cross-sectional area of the inlet air channel on the specific enthalpy of the exhaust gas of a diesel engine using statistics F of the Fisher-Snedecor distribution’ Combustion Engines-Vol. 182, issue 3/2020, s.10-15. 2020. doi: 10.19206/CE-2020-30210.19206/CE-2020-302 Search in Google Scholar

28. Roberts S. J., Stone R., et. al., ‘Instantaneous Exhaust Temperature Measurement Using Thermocouple Compensation Techniques’, SAE Technical Papers. 2004. doi: 10.4271/2004-01-141810.4271/2004-01-1418 Search in Google Scholar

29. Rutkowski S., Wykorzystanie dynamicznych pomiarów temperatur spalin wylotowych w diagnostyce okrętowych silników spalinowych, Kopia maszynopisu streszczenia artykułu z 1976 roku. 1976. [‘The use of dynamic measurements of exhaust gas temperatures in the diagnosis of marine internal combustion engines’, Typescript copy of an abstract of a 1976 paper] Search in Google Scholar

30. Shannon C. E., A mathematical theory of cryptography. A classified memorandum for Bell Telephone Labs. USA. 1945. Search in Google Scholar

31. Tagawa M. and Ohta Y., Two – ‘Thermocouple Probe for Fluctuating Temperature Measurement in Combustion - Rational Estimation of Mean and Fluctuating Time Constants’ Combustion and Flame, nr 109, str. 540-560. 1997. doi: 10.1016/S0010-2180(97)00044-810.1016/S0010-2180(97)00044-8 Search in Google Scholar

32. Wang and L. Yao, ‘Effect of Engine Speeds and Dimethyl Ether on Methyl Decanoate HCCI Combustion and Emission Characteristics Based on Low-Speed Two-Stroke Diesel Engine’, Polish Maritime Research, vol. 27, no. 2, 2020, doi: 10.2478/pomr-2020-0030.10.2478/pomr-2020-0030 Search in Google Scholar

33. Wisłocki K., Studium wykorzystania badań optycznych do analizy procesów wtrysku i spalania w silnikach o zapłonie samoczynnym, Rozprawa habilitacyjna, Rozprawy nr 387, Wydawnictwo Politechniki Poznańskiej, 2004. [‘A study of the use of optical testing for the analysis of injection and combustion processes in compression ignition engines’, Habilitation dissertation.] Search in Google Scholar

34. Wiśniewski S., Termodynamika techniczna, WNT. 2005. [‘Technical thermodynamics‘] Search in Google Scholar

35. Witkowski K., ‘The Increase of Operational Safety of Ships by Improving Diagnostic Methods for Marine Diesel Engine’ Transnav the International Journal on Marine Navigation and Safety of Sea Transportation, vol. 11, no 2. 2017. doi: 10.12716/1001.11.02.1510.12716/1001.11.02.15 Search in Google Scholar

36. Woś, P., Jaworski, A., Kuszewski, H., Lejda, K. and Ustrzycki, A., ‘Technical and operating problems yielded from setting up the optimum value of geometric compression ratio in piston engines’ Combustion Engines, Vol. 164, 1/2016, s. 3-14. 2016.10.19206/CE-116483 Search in Google Scholar

37. Yang, Q. Tan, and P. Geng, ‘Combustion and Emissions Investigation on Low-Speed Two-Stroke Marine Diesel Engine with Low Sulfur Diesel Fuel’, Polish Maritime Research, vol. 26, no. 1, 2019, doi: 10.2478/pomr-2019-0017.10.2478/pomr-2019-0017 Search in Google Scholar

38. Zacharewicz M., Metoda diagnozowania przestrzeni roboczych silnika okrętowego na podstawie parametrów gazodynamicznych w kanale zasilającym turbosprężarkę. Rozprawa doktorska. AMW. 2010. [‘A method for diagnosing the working spaces of a marine engine on the basis of gasodynamic parameters in the turbocharger feed channel’, PhD dissertation] Search in Google Scholar

39. Zhao et al., ‘A Numerical and Experimental Study of Marine Hydrogen-Natural Gas-Diesel Tri-Fuel Engines’, Polish Maritime Research, vol. 27, no. 4, 2020, doi: 10.2478/pomr-2020-0068.10.2478/pomr-2020-0068 Search in Google Scholar

1. International Association of Classification Societies, Requirements Concerning Machinery Installations. ‘M35: Alarms, remote indications and safeguards for main reciprocating I.C. engines installed in unattended machinery spaces’. 2016. Search in Google Scholar

2. International Association of Classification Societies, Requirements Concerning Machinery Installations. ‘M36: Alarms and safeguards for auxiliary reciprocating I. C. engines driving generators in unattended machinery spaces’. 2016. Search in Google Scholar

3. International Association of Classification Societies, Requirements Concerning Machinery Installations. ‘M73: Turbochargers’. 2016 Search in Google Scholar

4. Polski Rejestr Statków, Przepisy. Publikacja nr 5/P. ‘Wymagania dla turbosprężarek. Rozdział 2. Wymagana dokumentacja’. 2016[‘Requirements for turbochargers. Chapter 2 - Required documentation‘] Search in Google Scholar

5. Polski Rejestr Statków, Przepisy. Publikacja nr 28/P. ‘Próby silników spalinowych. Rozdział 1. Próba typu silników spalinowych. Rozdział 2. Próby zdawczo – odbiorcze silników spalinowych (szczególnie podrozdział 2.2.2)’. 2019. [‘Internal combustion engine tests. Chapter 1: Type tests for internal combustion engines. Chapter 2: Acceptance tests of internal combustion engines (especially subchapter 2.2.2)‘] Search in Google Scholar

eISSN:
2083-7429
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences