Acceso abierto

Numerical Analysis of the Effect of Flexibility on the Propulsive Performance of a Heaving Hydrofoil Undergoing Sinusoidal and Non-Sinusoidal Motions


Cite

1. Y. Chen, J. Nan, and J. Wu, “Wake effect on a semi-active flapping foil based energy harvester by a rotating foil,” Computers & Fluids, vol. 160, pp. 51–63, Jan. 2018.10.1016/j.compfluid.2017.10.024 Search in Google Scholar

2. S. Rashidi, M. Hayatdavoodi, and J. A. Esfahani, “Vortex shedding suppression and wake control: A review,” Ocean Engineering, vol. 126, pp. 57–80, Nov. 2016.10.1016/j.oceaneng.2016.08.031 Search in Google Scholar

3. E. Wang, Q. Xiao, Q. Zhu, and A. Incecik, “The effect of spacing on the vortex-induced vibrations of two tandem flexible cylinders,” Physics of Fluids, vol. 29, no. 7, art. no. 077103, Jul. 2017. Search in Google Scholar

4. F. T. Muijres, P. Henningsson, M. Stuiver, and A. Hedenstrom, “Aerodynamic flight performance in flap-gliding birds and bats,” Journal of Theoretical Biology, vol. 306, pp. 120–128, Aug. 2012.10.1016/j.jtbi.2012.04.01422726811 Search in Google Scholar

5. J. Zhang and X.-Y. Lu, “Aerodynamic performance due to forewing and hindwing interaction in gliding dragonfly flight,” Physical Review E, vol. 80, no. 1, art. no. 017302, Jul. 2009. Search in Google Scholar

6. Z. Cui, Z. Yang, L. Shen, and H. Z. Jiang, “Complex modal analysis of the movements of swimming fish propelled by body and/or caudal fin,” Wave Motion, vol. 78, pp. 83–97, Apr. 2018.10.1016/j.wavemoti.2018.01.001 Search in Google Scholar

7. W. Shyy et al., “Recent progress in flapping wing aerodynamics and aeroelasticity,” Progress in Aerospace Sciences, vol. 46, no. 7, pp. 284–327, Oct. 2010.10.1016/j.paerosci.2010.01.001 Search in Google Scholar

8. M. S. Triantafyllou, G. S. Triantafyllou, and D. K. P. Yue, “Hydrodynamics of fishlike swimming,” Annual Review of Fluid Mechanics, vol. 32, no. 1, pp. 33–53, 2000.10.1146/annurev.fluid.32.1.33 Search in Google Scholar

9. G. S. Triantafyllou, M. S. Triantafyllou, M. A. Grosenbaugh, “Optimal Thrust Development in Oscillating Foils with Application to Fish Propulsion,” Journal of Fluids and Structures, vol. 7, no. 2, pp. 205–224, 1993.10.1006/jfls.1993.1012 Search in Google Scholar

10. J. A. Szantyr, R. Biernacki, P. Flaszynski, P. Dymarski, and M. Kraskowski, “An experimental and numerical study of the vortices generated by hydrofoils,” Polish Maritime Research, vol. 16, no. 3, pp. 11–17, 2009.10.2478/v10012-008-0027-3 Search in Google Scholar

11. E. J. Chae, D. T. Akcabay, A. Lelong, J. A. Astolfi, and Y. L. Young, “Numerical and experimental investigation of natural flow-induced vibrations of flexible hydrofoils,” Physics of Fluids, vol. 28, no. 7, art. no. 075102, Jul. 2016. Search in Google Scholar

12. J. M. Anderson, K. Streitlien, D. S. Barrett, and M. S. Triantafyllou, “Oscillating foils of high propulsive efficiency,” Journal of Fluid Mechanics, vol. 360, pp. 41–72, Apr. 1998.10.1017/S0022112097008392 Search in Google Scholar

13. Koochesfahani and M. Manoochehr, “Vortical patterns in the wake of an oscillating airfoil,” AIAA Journal, vol. 27, no. 9, pp. 1200–1205, 1989. Search in Google Scholar

14. G. Pedro, A. Suleman, and N. Djilali, “A numerical study of the propulsive efficiency of a flapping hydrofoil,” International Journal for Numerical Methods in Fluids, vol. 42, no. 5, pp. 493–526, Jun. 2003.10.1002/fld.525 Search in Google Scholar

15. P. Flaszynski, J. A. Szantyr, and K. Tesch, “Numerical prediction of steady and unsteady tip vortex cavitation on hydrofoils,” Polish Maritime Research, vol. 19, no. 3, pp. 3–15, 2012.10.2478/v10012-012-0026-2 Search in Google Scholar

16. M. S. Triantafyllou, G. S. Triantafyllou, and R. J. Gopalkrishnan, “Wake mechanics for thrust generation in oscillating foils,” Physics of Fluids A: Fluid Dynamics, vol. 3, no. 12, pp. 2835–2837, 1991. Search in Google Scholar

17. C. Eloy, “Optimal Strouhal number for swimming animals,” Journal of Fluids and Structures, vol. 30, no. 2, pp. 205–218, Apr. 2012.10.1016/j.jfluidstructs.2012.02.008 Search in Google Scholar

18. G. C. Lewin and H. Haj-Hariri, “Modelling thrust generation of a two-dimensional heaving airfoil in a viscous flow,” Journal of Fluid Mechanics, vol. 492, pp. 339–362, Oct. 2003.10.1017/S0022112003005743 Search in Google Scholar

19. Z. J. Wang, “Vortex shedding and frequency selection in flapping flight,” Journal of Fluid Mechanics, vol. 410, pp. 323–341, May. 2000.10.1017/S0022112099008071 Search in Google Scholar

20. R. Godoy-Diana, J.-L. Aider, and J. E. Wesfreid, “Transitions in the wake of a flapping foil,” Physical Review E, vol. 77, no. 1, art. no. 016308, Jan. 2008. Search in Google Scholar

21. T. Schnipper, A. Andersen, and T. Bohr, “Vortex wakes of a flapping foil,” Journal of Fluid Mechanics, vol. 633, pp. 411–423, Aug. 2009.10.1017/S0022112009007964 Search in Google Scholar

22. A. Andersen, T. Bohr, T. Schnipper, and J. H. Walther, “Wake structure and thrust generation of a flapping foil in twodimensional flow,” Journal of Fluid Mechanics, vol. 812, art. no. R4, Feb. 2017.10.1017/jfm.2016.808 Search in Google Scholar

23. D. Weihs, “Hydromechanics of fish schooling,” Nature, vol. 241, pp. 290-291, 1973.10.1038/241290a0 Search in Google Scholar

24. J. Zhang, S. Childress, A. Libchaber, and M. Shelley, “Flexible filaments in a flowing soap film as a model for one-dimensional flags in a two-dimensional wind,” Nature, vol. 408, no. 6814, pp. 835-839, Dec. 2000. Search in Google Scholar

25. G. Xue et al., “Optimal design and numerical simulation on fish-like flexible hydrofoil propeller,” Polish Maritime Research, vol. 23, no. 4, pp. 59–66, Dec. 2016.10.1515/pomr-2016-0070 Search in Google Scholar

26. S. Heathcote and I. Gursul, “Flexible flapping airfoil propulsion at low Reynolds numbers,” AIAA Journal, vol. 45, no. 5, pp. 1066–1079, May 2007. Search in Google Scholar

27. S. Alben, “Optimal flexibility of a flapping appendage in an inviscid fluid,” Journal of Fluid Mechanics, vol. 614, pp. 355–380, Nov. 2008.10.1017/S0022112008003297 Search in Google Scholar

28. S. Michelin and S. G. L. Smith, “Resonance and propulsion performance of a heaving flexible wing,” Physics of Fluids, vol. 21, no. 7, art. no. 071902, Jul. 2009. Search in Google Scholar

29. Y. Zhang, C. Zhou, and H. Luo, “Effect of mass ratio on thrust production of an elastic panel pitching or heaving near resonance,” Journal of Fluids and Structures, vol. 74, pp. 385–400, Oct. 2017.10.1016/j.jfluidstructs.2017.07.003 Search in Google Scholar

30. S. Heathcote, Z. Wang, and I. Gursul, “Effect of spanwise flexibility on flapping wing propulsion,” Journal of Fluids and Structures, vol. 24, no. 2, pp. 183–199, Feb. 2008.10.1016/j.jfluidstructs.2007.08.003 Search in Google Scholar

31. D. A. Read, F. S. Hover, and M. S. Triantafyllou, “Forces on oscillating foils for propulsion and maneuvering,” Journal of Fluids and Structures, vol. 17, no. 1, pp. 163–183, Jan. 2003.10.1016/S0889-9746(02)00115-9 Search in Google Scholar

32. Q. Xiao and W. Liao, “Numerical investigation of angle of attack profile on propulsion performance of an oscillating foil,” Computers and Fluids, vol. 39, no. 8, pp. 1366–1380, Sep. 2010. Search in Google Scholar

33. K. Lu, Y. H. Xie, and D. Zhang, “Numerical study of large amplitude, nonsinusoidal motion and camber effects on pitching airfoil propulsion,” Journal of Fluids and Structures, vol. 36, pp. 184–194, Jan. 2013.10.1016/j.jfluidstructs.2012.10.004 Search in Google Scholar

34. A. Boudis, A. C. Bayeul-Laine, A. Benzaoui, H. Oualli, O. Guerri, and O. Coutier-Delgosha, “Numerical investigation of the effects of nonsinusoidal motion trajectory on the propulsion mechanisms of a flapping airfoil,” Journal of Fluids Engineering, vol. 141, no. 4, art. no. 041106, Apr. 2019. Search in Google Scholar

35. S. A. Manjunathan and R. Bhardwaj, “Thrust generation by pitching and heaving of an elastic plate at low Reynolds number,” Physics of Fluids, vol. 32, no. 7, Jul. 2020.10.1063/5.0010873 Search in Google Scholar

36. R. J. Wootton, “Support and deformability in insect wings,” Journal of Zoology, vol. 193, no. 4, pp. 447–468, 1981.10.1111/j.1469-7998.1981.tb01497.x Search in Google Scholar

37. J. Young and J. C. S. Lai, “Oscillation frequency and amplitude effects on the wake of a plunging airfoil,” AIAA Journal, vol. 42, no. 10, pp. 2042-2052, Oct. 2004. Search in Google Scholar

38. S. Turek and J. Hron, Proposal for Numerical Benchmarking of Fluid-Structure Interaction between an Elastic Object and Laminar Incompressible Flow (Springer). Berlin: Springer, 2006. Search in Google Scholar

39. G. K. Taylor, R. L. Nudds, and A. L. R. Thomas, “Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency,” Nature, vol. 425, no. 6959, pp. 707–711, Oct. 2003. Search in Google Scholar

40. K. Isogai, Y. Shinmoto, and Y. Watanabe, “Effects of dynamic stall on propulsive efficiency and thrust of flapping airfoil,” AIAA Journal, vol. 37, no. 10, pp. 1145–1151, Oct. 1999. Search in Google Scholar

41. I. H. Tuncer and M. Kaya, “Optimization of flapping airfoils for maximum thrust and propulsive efficiency,” AIAA Journal, vol. 43, no. 11, pp. 2329–2336, Nov. 2005. Search in Google Scholar

eISSN:
2083-7429
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences