Cite

1. R. Goonesekere and Y. Guo, “Unmanned Underwater Drone Design for Ocean Exploration,” in ASME 2018 International Mechanical Engineering Congress and Exposition, 2018.10.1115/IMECE2018-87649 Search in Google Scholar

2. L. Mayer, M. Jakobsson, G. Allen, B. Dorschel, R. Falconer, V. Ferrini, et al., “The Nippon Foundation—GEBCO seabed 2030 project: The quest to see the world’s oceans completely mapped by 2030,” Geosciences, vol. 8, p. 63, 2018.10.3390/geosciences8020063 Search in Google Scholar

3. S. Marini, N. Gjeci, S. Govindaraj, A. But, B. Sportich, E. Ottaviani, et al., “ENDURUNS: An Integrated and Flexible Approach for Seabed Survey Through Autonomous Mobile Vehicles,” Journal of Marine Science and Engineering, vol. 8, p. 633, 2020.10.3390/jmse8090633 Search in Google Scholar

4. R. Veugelers, M. Cincera, R. Frietsch, C. Rammer, T. Schubert, A. Pelle, et al., “The impact of horizon 2020 on innovation in Europe,” Intereconomics, vol. 50, pp. 4-30, 2015.10.1007/s10272-015-0521-7 Search in Google Scholar

5. I. Segovia, A. Pliego, M. Papaelias, and F. P. G. Márquez, “Optimal Management of Marine Inspection with Autonomous Underwater Vehicles,” in International Conference on Management Science and Engineering Management, 2019, pp. 760-771.10.1007/978-3-030-21248-3_57 Search in Google Scholar

6. R. Danovaro, J. Aguzzi, E. Fanelli, D. Billett, K. Gjerde, A. Jamieson, et al., “An ecosystem-based deep-ocean strategy,” Science, vol. 355, pp. 452-454, 2017.10.1126/science.aah717828154032 Search in Google Scholar

7. S. Sokolov, A. Zhilenkov, A. Nyrkov, and S. Chernyi, “The use robotics for underwater research complex objects,” in Computational intelligence in data mining, ed: Springer, 2017, pp. 421-427.10.1007/978-981-10-3874-7_39 Search in Google Scholar

8. R. Danovaro, C. Corinaldesi, A. Dell’Anno, and P. V. Snelgrove, “The deep-sea under global change,” Current Biology, vol. 27, pp. R461-R465, 2017.10.1016/j.cub.2017.02.04628586679 Search in Google Scholar

9. A. Aguzzi, “’Broken access’ publishing corrodes quality,” Nature, vol. 570, pp. 139-140, 2019.10.1038/d41586-019-01787-231190018 Search in Google Scholar

10. J. Aguzzi, D. Chatzievangelou, S. Marini, E. Fanelli, R. Danovaro, S. Flögel, et al., “New high-tech flexible networks for the monitoring of deep-sea ecosystems,” Environmental science & technology, vol. 53, pp. 6616-6631, 2019. Search in Google Scholar

11. M. Rovere, A. Mercorella, E. Frapiccini, V. Funari, F. Spagnoli, C. Pellegrini, et al., “Geochemical and geophysical monitoring of hydrocarbon seepage in the Adriatic Sea,” Sensors, vol. 20, p. 1504, 2020.10.3390/s20051504708559732182919 Search in Google Scholar

12. U. Neettiyath, B. Thornton, M. Sangekar, Y. Nishida, K. Ishii, A. Bodenmann, et al., “Deep-Sea Robotic Survey and Data Processing Methods for Regional-Scale Estimation of Manganese Crust Distribution,” IEEE Journal of Oceanic Engineering, vol. 46, pp. 102-114, 2020.10.1109/JOE.2020.2978967 Search in Google Scholar

13. M. Esposito, M. Martinez-Cabanas, D. P. Connelly, D. Jasinski, P. Linke, M. Schmidt, et al., “Water column baseline assessment for offshore Carbon Dioxide Capture and Storage (CCS) sites: Analysis of field data from the Goldeneye storage complex area,” International Journal of Greenhouse Gas Control, vol. 109, p. 103344, 2021. Search in Google Scholar

14. GEBCO, “General Bathymetric Chart of Oceans,” Available online: https://www.gebco.net/ (accessed on June 2021). 2021. Search in Google Scholar

15. IHO, “International Hydrographic Organization.,” Available online: https://iho.int/ (Accessed on June 2021), 2021. Search in Google Scholar

16. IOC, “Intergovernmental Oceanographic Commission.,” Available online: http://www.ioc-unesco.org/ (Accessed June 2021), 2021. Search in Google Scholar

17. R. B. Wynn, V. A. Huvenne, T. P. Le Bas, B. J. Murton, D. P. Connelly, B. J. Bett, et al., “Autonomous Underwater Vehicles (AUVs): Their past, present and future contributions to the advancement of marine geoscience,” Marine Geology, vol. 352, pp. 451-468, 2014.10.1016/j.margeo.2014.03.012 Search in Google Scholar

18. W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and challenges,” IEEE internet of things journal, vol. 3, pp. 637-646, 2016.10.1109/JIOT.2016.2579198 Search in Google Scholar

19. M. Jahanbakht, W. Xiang, L. Hanzo, and M. R. Azghadi, “Internet of underwater Things and big marine data analytics—A comprehensive survey,” IEEE Communications Surveys & Tutorials, 2021.10.1109/COMST.2021.3053118 Search in Google Scholar

20. B. Shi, Y. Su, D. Zhang, C. Wang, and M. S. AbouOmar, “Research on Trajectory Reconstruction Method Using Automatic Identification System Data for Unmanned Surface Vessel,” IEEE Access, vol. 7, pp. 170374-170384, 2019. Search in Google Scholar

21. R. Al-Zaidi, J. Woods, M. Al-Khalidi, and H. Hu, “An iot-enabled system for marine data acquisition and cartography,” Transactions on networks and Communications, vol. 5, 2017.10.14738/tnc.51.2796 Search in Google Scholar

22. R. Al-Zaidi, J. C. Woods, M. Al-Khalidi, and H. Hu, “Building Novel VHF-Based Wireless Sensor Networks for the Internet of Marine Things,” IEEE Sensors Journal, vol. 18, pp. 2131-2144, 2018. Search in Google Scholar

23. R. M. Alkan, M. H. Saka, İ. M. Ozulu, and V. İlçi, “Kinematic precise point positioning using GPS and GLONASS measurements in marine environments,” Measurement, vol. 109, pp. 36-43, 2017.10.1016/j.measurement.2017.05.054 Search in Google Scholar

24. T. Liu, Y. Yuan, B. Zhang, N. Wang, B. Tan, and Y. Chen, “Multi-GNSS precise point positioning (MGPPP) using raw observations,” Journal of geodesy, vol. 91, pp. 253-268, 2017.10.1007/s00190-016-0960-3 Search in Google Scholar

25. J. Tegedor, O. Ørpen, T. Melgård, D. Łapucha, and H. Visser, “G4 Multi-constellation Precise Point Positioning service for high accuracy offshore navigation,” TransNav: International Journal on Marine Navigation and Safety of Sea Transportation, vol. 11, 2017.10.12716/1001.11.03.05 Search in Google Scholar

26. N. Goyal, M. Dave, and A. K. Verma, “Protocol stack of underwater wireless sensor network: classical approaches and new trends,” Wireless Personal Communications, vol. 104, pp. 995-1022, 2019.10.1007/s11277-018-6064-z Search in Google Scholar

27. A. Song, M. Stojanovic, and M. Chitre, “Editorial underwater acoustic communications: Where we stand and what is next?,” IEEE Journal of Oceanic Engineering, vol. 44, pp. 1-6, 2019.10.1109/JOE.2018.2883872 Search in Google Scholar

28. K. F. Haque, K. H. Kabir, and A. Abdelgawad, “Advancement of Routing Protocols and Applications of Underwater Wireless Sensor Network (UWSN)—A Survey,” Journal of Sensor and Actuator Networks, vol. 9, p. 19, 2020.10.3390/jsan9020019 Search in Google Scholar

29. N. Zhang, “Architecture Research and Design of the IoT Middleware for Marine Logistics,” Journal of Coastal Research, vol. 94, pp. 196-199, 2019.10.2112/SI94-041.1 Search in Google Scholar

30. F. P. G. Márquez, I. P. G. Pardo, and M. R. M. Nieto, “Competitiveness based on logistic management: a real case study,” Annals of Operations Research, vol. 233, pp. 157-169, 2015.10.1007/s10479-013-1508-z Search in Google Scholar

31. M.-H. Jeon, Y.-J. Jo, S.-H. Kim, and C.-H. Oh, “Design of GPS based LPWA module for marine IoT applications,” presented at the INTERNATIONAL CONFERENCE ON FUTURE INFORMATION & COMMUNICATION ENGINEERING, 2018. Search in Google Scholar

32. J. Aguzzi, D. Chatzievangelou, S. Marini, E. Fanelli, R. Danovaro, S. Flögel, et al., “New High-Tech Flexible Networks for the Monitoring of Deep-Sea Ecosystems,” Environmental Science & Technology, vol. 53, pp. 6616-6631, 2019/06/18 2019. Search in Google Scholar

33. J. Aguzzi, D. Chatzievangelou, M. Francescangeli, S. Marini, F. Bonofiglio, J. del Rio, et al., “The hierarchic treatment of marine ecological information from spatial networks of benthic platforms,” Sensors, vol. 20, p. 1751, 2020.10.3390/s20061751714636632245204 Search in Google Scholar

34. Y. Wu, X. Ta, R. Xiao, Y. Wei, D. An, and D. Li, “Survey of underwater robot positioning navigation,” Applied Ocean Research, vol. 90, p. 101845, 2019. Search in Google Scholar

35. C. A. Medina, M. R. Pérez, and L. C. Trujillo, “IoT Paradigm into the Smart City Vision: A Survey,” in 2017 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), 2017, pp. 695-704.10.1109/iThings-GreenCom-CPSCom-SmartData.2017.109 Search in Google Scholar

36. B. Xiao, R. Rahmani, L. Yuhong, D. Gillblad, and T. Kanter, “Intelligent data-intensive IoT: A survey,” in 2016 2nd IEEE International Conference on Computer and Communications (ICCC), 2016, pp. 2362-2368.10.1109/CompComm.2016.7925122 Search in Google Scholar

37. C. I. Noshi, A. I. Assem, and J. J. Schubert, “The Role of Big Data Analytics in Exploration and Production: A Review of Benefits and Applications,” in SPE International Heavy Oil Conference and Exhibition, 2018.10.2118/193776-MS Search in Google Scholar

38. L. Guidi, A. Fernàndez-Guerra, C. Canchaya, E. Curry, F. Foglini, J.-O. Irisson, et al., “Big data in marine science,” Marine Board Future Science Brief, 2020. Search in Google Scholar

39. R. Kumar, S. P. Singh, and K. Lamba, “Sustainable robust layout using Big Data approach: A key towards industry Search in Google Scholar

4.0,” Journal of Cleaner Production, vol. 204, pp. 643-659, 2018/12/10/ 2018.10.1016/j.jclepro.2018.08.327 Search in Google Scholar

40. C. Fraunhofer, “Maritime unmanned navigation through intelligence in networks,” Fraunhofer CML: Hamburg, Germany, 2016. Search in Google Scholar

41. P. J. B. Sánchez, M. Papaelias, and F. P. G. Márquez, “Autonomous underwater vehicles: Instrumentation and measurements,” IEEE Instrumentation & Measurement Magazine, vol. 23, pp. 105-114, 2020.10.1109/MIM.2020.9062680 Search in Google Scholar

42. Y. Li, T. Ma, R. Wang, P. Chen, and Q. Zhang, “Terrain Correlation Correction Method for AUV Seabed Terrain Mapping,” Journal of Navigation, vol. 70, pp. 1062-1078, 2017. Search in Google Scholar

43. S. Jiang, “Marine internet for internetworking in oceans: A tutorial,” Future Internet, vol. 11, p. 146, 2019.10.3390/fi11070146 Search in Google Scholar

44. M. J. P. Saiz, “Study and development of a Submarine Optical Communication: TCP Protocol,” 2018. Search in Google Scholar

45. E. D. Wardihani, E. Purbawati, and E. Supriyanto, “Analysis of multi-source effect in underwater communication,” in 2017 IEEE International Conference on Communication, Networks and Satellite (Comnetsat), 2017, pp. 67-73.10.1109/COMNETSAT.2017.8263575 Search in Google Scholar

46. A. Khoiro, I. Arifin, M. Pratama, and M. F. Adianto, “Design and Development Graphical User Interface on Inertial Navigation System of Submarine,” IPTEK Journal of Proceedings Series, pp. 62-67, 2019.10.12962/j23546026.y2019i3.5844 Search in Google Scholar

47. S. S and B. Maram, “Underwater Wireless Sensor Networks,” 2018, vol. 2, p. 3, 2018-01-05 2018. Search in Google Scholar

48. V. Khajuria and M. Kaur, “Underwater Wireless Sensor Network: Architecture, Applications and Challenges,” in 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI), 2018, pp. 939-944.10.1109/ICOEI.2018.8553903 Search in Google Scholar

49. B. Zerr, L. Jaulin, V. Creuze, N. Debese, I. Quidu, B. Clement, et al., Quantitative Monitoring of the Underwater Environment vol. 6: Springer, 2016.10.1007/978-3-319-32107-3 Search in Google Scholar

50. S. Jiang, F. Liu, and S. Jiang, “Distance-alignment based adaptive MAC protocol for underwater acoustic networks,” in 2016 IEEE Wireless Communications and Networking Conference, 2016, pp. 1-6.10.1109/WCNC.2016.7564843 Search in Google Scholar

51. J. Goh, A. Shaw, and A. Al-Shamma’a, “Underwater wireless communication system,” in Journal of Physics: Conference Series, 2009, p. 012029.10.1088/1742-6596/178/1/012029 Search in Google Scholar

52. G. Mazurek, “Basic channel parameters of ultrasound transmission in air,” in 2018 22nd International Microwave and Radar Conference (MIKON), 2018, pp. 607-609.10.23919/MIKON.2018.8405300 Search in Google Scholar

53. E. Demirors, D. Unal, G. E. Santagati, and T. Melodia, “High-Data Rate Carrierless Impulsive Communications For Underwater Acoustic Networks,” in Underwater Acoustics Conference and Exhibition, 2019. Search in Google Scholar

54. A. Krivchenkov and A. Skrunds, “Measurements of the Parameters of a Broadband Satellite Data Channel in the SEVSAT Ship System,” Cham, 2019, pp. 440-449.10.1007/978-3-030-12450-2_41 Search in Google Scholar

55. I. I. Lysogor, L. S. Voskov, and S. G. Efremov, “Survey of data exchange formats for heterogeneous LPWAN-satellite IoT networks,” in 2018 Moscow Workshop on Electronic and Networking Technologies (MWENT), 2018, pp. 1-5.10.1109/MWENT.2018.8337257 Search in Google Scholar

56. S. N. Rao, D. Raj, V. Parthasarathy, S. Aiswarya, M. V. Ramesh, and V. Rangan, “A novel solution for high speed internet over the oceans,” in IEEE INFOCOM 2018 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 2018, pp. 906-912. Search in Google Scholar

57. K. Korcz, “19. Yesterday, Today and Tomorrow of the GMDSS,” International Recent Issues about ECDIS, e-Navigation and Safety at Sea: Marine Navigation and Safety of Sea Transportation, p. 149, 2017.10.1201/b11342-25 Search in Google Scholar

58. B. Bellalta, “IEEE 802.11ax: High-efficiency WLANS,” IEEE Wireless Communications, vol. 23, pp. 38-46, 2016.10.1109/MWC.2016.7422404 Search in Google Scholar

59. J. Ge, T. Li, and T. Geng, “The Wireless Communications for Unmanned Surface Vehicle: An Overview,” Cham, 2018, pp. 113-119.10.1007/978-3-319-97586-3_10 Search in Google Scholar

60. J. Kim, S. Koo, and G. Lee, “Comparison of Speed by Type of Wireless LAN,” in Proceedings of the Korean Institute of Information and Commucation Sciences Conference, 2018, pp. 19-20. Search in Google Scholar

61. S. Park, J. Kim, S. Yun, and J. Choi, “SIGNAL TRANSMISSION/RECEPTION METHOD IN WIRELESS LAN SYSTEM, AND DEVICE THEREFOR,” ed: US Patent App. 16/461,351, 2020. Search in Google Scholar

62. K. Korcz, “Maritime radio information systems,” Journal of KONES, vol. 24, 2017. Search in Google Scholar

63. S. Mun, J. Son, W. Jo, and W. Lee, “An implementation of AIS-based ad hoc routing (AAR) protocol for maritime data communication networks,” in 2012 8th International Conference on Natural Computation, 2012, pp. 1007-1010.10.1109/ICNC.2012.6234623 Search in Google Scholar

64. F. Lázaro, R. Raulefs, W. Wang, F. Clazzer, and S. Plass, “VHF Data Exchange System (VDES): an enabling technology for maritime communications,” CEAS space Journal, vol. 11, pp. 55-63, 2019.10.1007/s12567-018-0214-8 Search in Google Scholar

65. I. Recommendation, “2092-0, Technical characteristics for a VHF data exchange system in the VHF maritime mobile band,” International Telecommunication Union, Geneva, 2015. Search in Google Scholar

66. P. H. Putman, “Display Interfacing 2018: Getting Around the UHD Speed Bump,” SMPTE Motion Imaging Journal, vol. 127, pp. 51-55, 2018.10.5594/JMI.2018.2838798 Search in Google Scholar

67. D. Anderson and J. Trodden, USB 3.0 Technology: MindShare Press, 2013. Search in Google Scholar

68. A. Sadat, M. Campbell, H. Ali, and Z. Lin, “Alternate Mode for USB Type-C™: Going beyond USB,” Texas Instruments, 2016. Search in Google Scholar

69. A. Li, “USB Type-C for Machine Vision,” Quality, pp. 16VS-17VS, 2018. Search in Google Scholar

70. J. C. R. Guerrero, I. B. Mabrouk, M. Alhassan, M. Nedil, and T. Ciamulski, “On the Path Loss Model for 5-GHz Microwave-Based Pinless Subsea Connectors,” Progress In Electromagnetics Research, vol. 82, pp. 147-153, 2019.10.2528/PIERL18102705 Search in Google Scholar

71. WiSub. (2018, 13/09/2020). High Performance Pinless Subsea Connector. Available: https://wisub.com/wp-content/uploads/2018/08/wisub_maelstrom_product_data_sheet_rD_web.pdf Search in Google Scholar

72. R. A. Atmoko, D. Yang, M. Y. Alfiani, and L. Subiyanto, “Controlling Unmanned Surface Vehicle Using MQTT Protocol,” Journal Of Computer Networks, Architecture and High Performance Computing, vol. 1, pp. 21-28, 2019.10.47709/cnapc.v1i2.229 Search in Google Scholar

73. A. L. Christensen, S. Oliveira, O. Postolache, M. J. o. De Oliveira, S. Sargento, P. Santana, et al., “Design of Communication and Control for Swarms of Aquatic Surface Drones,” in ICAART (2), 2015, pp. 548-555.10.5220/0005281705480555 Search in Google Scholar

74. G. B. Laleci, G. Aluc, A. Dogac, A. Sinaci, O. Kilic, and F. Tuncer, “A semantic backend for content management systems,” Knowledge-Based Systems, vol. 23, pp. 832-843, 2010/12/01/ 2010.10.1016/j.knosys.2010.05.008 Search in Google Scholar

75. M. Kaluža, M. Kalanj, and B. Vukelić, “A Comparison of Back-end Frameworks for Web Application Development,” Zbornik Veleučilišta u Rijeci, vol. 7, pp. 317-332, 2019.10.31784/zvr.7.1.10 Search in Google Scholar

76. Y. Carreno, È. Pairet, Y. Petillot, and R. P. Petrick, “Task Allocation Strategy for Heterogeneous Robot Teams in Offshore Missions,” in Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems, 2020, pp. 222-230. Search in Google Scholar

77. F. Thompson and D. Guihen, “Review of mission planning for autonomous marine vehicle fleets,” Journal of Field Robotics, vol. 36, pp. 333-354, 2019.10.1002/rob.21819 Search in Google Scholar

78. Z. Raja Jawwad, M. Chakkol, M. Johnson, and A. Beltagui, “Organizing for servitization: examining front- and back-end design configurations,” International Journal of Operations & Production Management, vol. 38, pp. 249-271, 2018.10.1108/IJOPM-03-2016-0139 Search in Google Scholar

79. H. Hastie, X. Liu, and P. Patron, “A demonstration of multimodal debrief generation for AUVs, post-mission and in-mission,” presented at the Proceedings of the 18th ACM International Conference on Multimodal Interaction, Tokyo, Japan, 2016.10.1145/2993148.2998525 Search in Google Scholar

80. H. Hastie, X. Liu, Y. Petillot, and P. Patron, “Talking autonomous vehicles: Automatic AUV mission analysis in natural language,” in OCEANS 2017 - Aberdeen, 2017, pp. 1-5.10.1109/OCEANSE.2017.8084617 Search in Google Scholar

81. H. Poranen, G. Marafioti, G. Johansen, and E. Sæter, “User Interface Design Guidelines for Marine Autonomous Operations Involving a Large Number of Actors, Devices and Sensors,” in ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering, 2018.10.1115/OMAE2018-78774 Search in Google Scholar

82. N. K. Yilmaz, C. Evangelinos, P. F. Lermusiaux, and N. M. Patrikalakis, “Path planning of autonomous underwater vehicles for adaptive sampling using mixed integer linear programming,” IEEE Journal of Oceanic Engineering, vol. 33, pp. 522-537, 2008.10.1109/JOE.2008.2002105 Search in Google Scholar

83. K. Zhang, J. Du, J. Wang, C. Jiang, Y. Ren, and A. Benslimane, “Distributed hierarchical information acquisition systems based on auv enabled sensor networks,” in ICC 2019-2019 IEEE International Conference on Communications (ICC), 2019, pp. 1-6.10.1109/ICC.2019.8761790 Search in Google Scholar

84. C. Yu, X. Xiang, F. Maurelli, Q. Zhang, R. Zhao, and G. Xu, “Onboard system of hybrid underwater robotic vehicles: Integrated software architecture and control algorithm,” Ocean Engineering, vol. 187, p. 106121, 2019/09/01/ 2019. Search in Google Scholar

85. A. Atyabi, S. MahmoudZadeh, and S. Nefti-Meziani, “Current advancements on autonomous mission planning and management systems: An AUV and UAV perspective,” Annual Reviews in Control, vol. 46, pp. 196-215, 2018/01/01/ 2018.10.1016/j.arcontrol.2018.07.002 Search in Google Scholar

86. J.-M. Kwak, S.-H. Kim, and S.-R. Lee, “Design of marine IoT wireless network for building fishing gear monitoring system,” The Journal of Advanced Navigation Technology, vol. 22, pp. 76-83, 2018. Search in Google Scholar

87. A. Nordrum, “A language for the internet of underwater things [News],” IEEE Spectrum, vol. 54, pp. 9-10, 2017.10.1109/MSPEC.2017.8012224 Search in Google Scholar

88. C. Petrioli, R. Petroccia, D. Spaccini, A. Vitaletti, T. Arzilli, D. Lamanna, et al., “The SUNRISE GATE: Accessing the SUNRISE federation of facilities to test solutions for the Internet of Underwater Things,” in 2014 Underwater Communications and Networking (UComms), 2014, pp. 1-4.10.1109/UComms.2014.7017144 Search in Google Scholar

89. L. S. Dalenogare, G. B. Benitez, N. F. Ayala, and A. G. Frank, “The expected contribution of Industry 4.0 technologies for industrial performance,” International Journal of Production Economics, vol. 204, pp. 383-394, 2018/10/01/ 2018.10.1016/j.ijpe.2018.08.019 Search in Google Scholar

90. M. Nitti, R. Girau, L. Atzori, and V. Pilloni, “Trustworthiness management in the IoT: The importance of the feedback,” in 2017 20th Conference on Innovations in Clouds, Internet and Networks (ICIN), 2017, pp. 325-327.10.1109/ICIN.2017.7899434 Search in Google Scholar

91. C. Costa, E. Fanelli, S. Marini, R. Danovaro, and J. Aguzzi, “Global Deep-Sea Biodiversity Research Trends Highlighted by Science Mapping Approach,” Frontiers in Marine Science, vol. 7, p. 384, 2020.10.3389/fmars.2020.00384 Search in Google Scholar

92. C. M. Harris, Handbook of acoustical measurements and noise control: McGraw-Hill New York, 1991. Search in Google Scholar

93. C. J. Deepu, C.-H. Heng, and Y. Lian, “A hybrid data compression scheme for power reduction in wireless sensors for IoT,” IEEE transactions on biomedical circuits and systems, vol. 11, pp. 245-254, 2016.10.1109/TBCAS.2016.259192327845673 Search in Google Scholar

94. S.-W. Jo, J. H. Jang, S. Yu, and W. Shim, “A Validation of Field Test Results for LTE-Maritime,” IFAC-PapersOnLine, vol. 51, pp. 153-158, 2018/01/01/ 2018.10.1016/j.ifacol.2018.09.485 Search in Google Scholar

95. G. Aloi, G. Caliciuri, G. Fortino, R. Gravina, P. Pace, W. Russo, et al., “A Mobile Multi-Technology Gateway to Enable IoT Interoperability,” in 2016 IEEE First International Conference on Internet-of-Things Design and Implementation (IoTDI), 2016, pp. 259-264.10.1109/IoTDI.2015.29 Search in Google Scholar

96. G. Xu, W. Shen, and X. Wang, “Applications of Wireless Sensor Networks in Marine Environment Monitoring: A Survey,” Sensors, vol. 14, pp. 16932-16954, 2014. Search in Google Scholar

97. G. Xu, W. Shen, and X. Wang, “Marine environment monitoring using Wireless Sensor Networks: A systematic review,” in 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2014, pp. 13-18. Search in Google Scholar

98. M. Dener and C. Bostancıoğlu, “Smart technologies with wireless sensor networks,” Procedia-Social and Behavioral Sciences, vol. 195, pp. 1915-1921, 2015. Search in Google Scholar

99. M. A. Kafi, J. B. Othman, and N. Badache, “A Survey on Reliability Protocols in Wireless Sensor Networks,” ACM Comput. Surv., vol. 50, p. Article 31, 2017.10.1145/3064004 Search in Google Scholar

100. R. Su, D. Zhang, C. Li, Z. Gong, R. Venkatesan, and F. Jiang, “Localization and Data Collection in AUV-Aided Underwater Sensor Networks: Challenges and Opportunities,” IEEE Network, vol. 33, pp. 86-93, 2019.10.1109/MNET.2019.1800425 Search in Google Scholar

101. P. V. Venkateswara Rao, N. Mohan Krishna Varma, and R. Sudhakar, “A Systematic Survey on Software-Defined Networks, Routing Protocols and Security Infrastructure for Underwater Wireless Sensor Networks (UWSNs),” Singapore, 2020, pp. 551-559.10.1007/978-981-15-0135-7_50 Search in Google Scholar

102. P. Tan, H. Wu, P. Li, and H. Xu, “Teaching management system with applications of RFID and IoT technology,” Education Sciences, vol. 8, p. 26, 2018.10.3390/educsci8010026 Search in Google Scholar

103. S. A. Ahson and M. Ilyas, RFID handbook: applications, technology, security, and privacy: CRC press, 2017.10.1201/9781420055009 Search in Google Scholar

104. G. Kara, “ANALYSIS OF METEOROLOGICAL FACTORS AFFECTING ON MARITIME TRANSPORT SYSTEMS,” PROCEEDINGS BOOK, p. 693, 2016. Search in Google Scholar

105. P. Gupta, J. Batra, J. Sangwan, and A. Khatri, “Marine Monitoring Based on WSN: Application and Challenges,” International Journal of Advanced Studies of Scientific Research, vol. 3, 2018. Search in Google Scholar

106. A. Khasawneh, M. S. B. A. Latiff, O. Kaiwartya, and H. Chizari, “Next Forwarding Node Selection in Underwater Wireless Sensor Networks (UWSNs): Techniques and Challenges,” Information, vol. 8, p. 3, 2017.10.3390/info8010003 Search in Google Scholar

107. H. I. Moud, A. Shojaei, and I. Flood, “Current and future applications of unmanned surface, underwater, and ground vehicles in construction,” in Proceedings of the Construction Research Congress, 2018, pp. 106-115. Search in Google Scholar

108. A. E. Pallares-Calvo, B. E. Carvajal-Gámez, and O. O. Gutiérrez-Frías, “Radio beacon for geo-referenced location at sea using mobile devices,” in Emerging Imaging and Sensing Technologies for Security and Defence III; and Unmanned Sensors, Systems, and Countermeasures, 2018, p. 107990X.10.1117/12.2325812 Search in Google Scholar

109. W. Sun, Z. Wei, B. Hong, and Y. Yang, “A Digital Ocean Cloud Platform Architecture Based on IPv6 Smart Gateway,” in 2019 IEEE 4th International Conference on Cloud Computing and Big Data Analysis (ICCCBDA), 2019, pp. 438-442. Search in Google Scholar

110. Y. Yang, Z. Wei, and B. Hong, “Research on IPv6 Transition Technology for Digital Ocean,” in 2018 IEEE 4th International Conference on Computer and Communications (ICCC), 2018, pp. 317-320.10.1109/CompComm.2018.8780871 Search in Google Scholar

111. G. Xu, Y. Shi, X. Sun, and W. Shen, “Internet of Things in Marine Environment Monitoring: A Review,” Sensors, vol. 19, p. 1711, 2019.10.3390/s19071711647933830974791 Search in Google Scholar

112. B. Kang and H. Choo, “An experimental study of a reliable IoT gateway,” ICT Express, vol. 4, pp. 130-133, 2018/09/01/ 2018.10.1016/j.icte.2017.04.002 Search in Google Scholar

113. S. Yoon and J. Kim, “Remote security management server for IoT devices,” in 2017 International Conference on Information and Communication Technology Convergence (ICTC), 2017, pp. 1162-1164.10.1109/ICTC.2017.8190885 Search in Google Scholar

114. M. Burhan, R. A. Rehman, B. Khan, and B.-S. Kim, “IoT elements, layered architectures and security issues: A comprehensive survey,” Sensors, vol. 18, p. 2796, 2018.10.3390/s18092796616545330149582 Search in Google Scholar

115. Z. Yang, W. Xie, L. Huang, and Z. Wei, “Marine data security based on blockchain technology,” IOP Conference Series: Materials Science and Engineering, vol. 322, p. 052028, 2018/03 2018. Search in Google Scholar

116. A. J. C. Trappey, C. V. Trappey, U. Hareesh Govindarajan, A. C. Chuang, and J. J. Sun, “A review of essential standards and patent landscapes for the Internet of Things: A key enabler for Industry 4.0,” Advanced Engineering Informatics, vol. 33, pp. 208-229, 2017/08/01/ 2017.10.1016/j.aei.2016.11.007 Search in Google Scholar

117. S. Mukherjee, “Collaborative governance strategies for a strategic offshore IT outsourcing engagement,” Journal of Global Operations and Strategic Sourcing, vol. 10, pp. 255-278, 2017.10.1108/JGOSS-11-2016-0037 Search in Google Scholar

118. L. Chen, “Investing in the IOT-Based Deep Learning that Makes a Competitive Difference: An Industrial View,” in 2017 International Conference on Network and Information Systems for Computers (ICNISC), 2017, pp. 205-207.10.1109/ICNISC.2017.00051 Search in Google Scholar

eISSN:
2083-7429
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences