Acceso abierto

Ultimate Compressive Strength Assessment of Uncleaned and Cleaned Corroded Plates with Locked Crack


Cite

1. K. Woloszyk, M. Kahsin, and Y. Garbatov, “Numerical assessment of ultimate strength of severe corroded stiffened plates,” Eng. Struct., vol. 168, pp. 346–354, Aug. 2018, doi: 10.1016/j.engstruct.2018.04.085.10.1016/j.engstruct.2018.04.085 Search in Google Scholar

2. S. Saad-Eldeen, Y. Garbatov, and C. Guedes Soares, “Ultimate strength analysis of highly damaged plates,” Mar. Struct., vol. 45, pp. 63–85, Jan. 2016, doi: 10.1016/j. marstruc.2015.10.006. Search in Google Scholar

3. K. Woloszyk, Y. Garbatov, J. Kowalski, and L. Samson, “Experimental and numerical investigations of ultimate strength of imperfect stiffened plates of different slenderness,” Polish Marit. Res., vol. 27, no. 4, pp. 120–129, 2020.10.2478/pomr-2020-0072 Search in Google Scholar

4. H. Ölmez and E. Bayraktarkatal, “Maximum Load Carrying Capacity Estimation of The Ship and Offshore Structures by Progressive Collapse Approach,” Polish Marit. Res., vol. 23, no. 3, pp. 28–38, Sep. 2016, doi: 10.1515/pomr-2016-0029.10.1515/pomr-2016-0029 Search in Google Scholar

5. S. Saad-Eldeen, Y. Garbatov, and C. Guedes Soares, “Ultimate strength assessment of corroded box girders,” Ocean Eng., vol. 58, pp. 35–47, Jan. 2013, doi: 10.1016/j. oceaneng.2012.09.019. Search in Google Scholar

6. S. Saad-Eldeen, Y. Garbatov, and C. Guedes Soares, “Effect of corrosion degradation on ultimate strength of steel box girders,” Corros. Eng. Sci. Technol., vol. 47, no. 4, pp. 272–283, Jun. 2012, doi: 10.1179/1743278212Y.0000000005.10.1179/1743278212Y.0000000005 Search in Google Scholar

7. X. H. Shi, J. Zhang, and C. Guedes Soares, “Numerical assessment of experiments on the ultimate strength of stiffened panels with pitting corrosion under compression,” Thin-Walled Struct., vol. 133, pp. 52–70, Dec. 2018, doi: 10.1016/j.tws.2018.09.029.10.1016/j.tws.2018.09.029 Search in Google Scholar

8. Y. Garbatov, M. Tekgoz, and C. Guedes Soares, “Experimental and numerical strength assessment of stiffened plates subjected to severe non-uniform corrosion degradation and compressive load,” Ships Offshore Struct., vol. 12, no. 4, pp. 461–473, May 2017, doi: 10.1080/17445302.2016.1173807.10.1080/17445302.2016.1173807 Search in Google Scholar

9. J. E. Silva, Y. Garbatov, and C. Guedes Soares, “Ultimate strength assessment of rectangular steel plates subjected to a random localised corrosion degradation,” Eng. Struct., vol. 52, pp. 295–305, Jul. 2013, doi: 10.1016/j. engstruct.2013.02.013. Search in Google Scholar

10. Y. Wang, S. Xu, and A. Li, “Flexural performance evaluation of corroded steel beams based on 3D corrosion morphology,” Struct. Infrastruct. Eng., pp. 1–16, Jan. 2020, doi: 10.1080/15732479.2020.1713169.10.1080/15732479.2020.1713169 Search in Google Scholar

11. Y. Garbatov, C. Guedes Soares, J. Parunov, and J. Kodvanj, “Tensile strength assessment of corroded small scale specimens,” Corros. Sci., vol. 85, pp. 296–303, Aug. 2014, doi: 10.1016/j.corsci.2014.04.031.10.1016/j.corsci.2014.04.031 Search in Google Scholar

12. Y. Garbatov, J. Parunov, J. Kodvanj, S. Saad-Eldeen, and C. Guedes Soares, “Experimental assessment of tensile strength of corroded steel specimens subjected to sandblast and sandpaper cleaning,” Mar. Struct., vol. 49, pp. 18–30, Sep. 2016, doi: 10.1016/J.MARSTRUC.2016.05.009.10.1016/j.marstruc.2016.05.009 Search in Google Scholar

13. Y. Garbatov, S. Saad-Eldeen, C. Guedes Soares, J. Parunov, and J. Kodvanj, “Tensile test analysis of corroded cleaned aged steel specimens,” Corros. Eng. Sci. Technol., pp. 1–9, Nov. 2018, doi: 10.1080/1478422X.2018.1548098.10.1080/1478422X.2018.1548098 Search in Google Scholar

14. K. Woloszyk and Y. Garbatov, “Random field modelling of mechanical behaviour of corroded thin steel plate specimens,” Eng. Struct., vol. 212, p. 110544, Jun. 2020, doi: 10.1016/j.engstruct.2020.110544.10.1016/j.engstruct.2020.110544 Search in Google Scholar

15. B. Nie, S. Xu, J. Yu, and H. Zhang, “Experimental investigation of mechanical properties of corroded cold-formed steels,” J. Constr. Steel Res., vol. 162, p. 105706, Nov. 2019, doi: 10.1016/j.jcsr.2019.105706.10.1016/j.jcsr.2019.105706 Search in Google Scholar

16. Y. Wang, S. Xu, H. Wang, and A. Li, “Predicting the residual strength and deformability of corroded steel plate based on the corrosion morphology,” Constr. Build. Mater., vol. 152, pp. 777–793, Oct. 2017, doi: 10.1016/j. conbuildmat.2017.07.035. Search in Google Scholar

17. S. Xu, Z. Zhang, and G. Qin, “Study on the seismic performance of corroded H-shaped steel columns,” Eng. Struct., vol. 191, pp. 39–61, Jul. 2019, doi: 10.1016/j. engstruct.2019.04.037. Search in Google Scholar

18. T. Moan, O. T. Va˚rdal, N.-C. Hellevig, and K. Skjoldli, “Initial Crack Depth and POD Values Inferred From In-Service Observations of Cracks in North Sea Jackets,” J. Offshore Mech. Arct. Eng., vol. 122, no. 3, pp. 157–162, Aug. 2000, doi: 10.1115/1.1286676.10.1115/1.1286676 Search in Google Scholar

19. J. K. Paik, G. Wang, A. K. Thayamballi, J. M. Lee, Y. Il Park, and J. Parunov, “Time-dependent risk assessment of aging ships accounting for general / pit corrosion, fatigue cracking and local denting damage,” Trans. - Soc. Nav. Archit. Mar. Eng., vol. 111, pp. 159–98, 2003. Search in Google Scholar

20. Y. A. Roy, B. P. Shastry, and G. V. Rao, “Stability of square plates with through transverse cracks,” Comput. Struct., vol. 36, no. 2, pp. 387–388, 1990, doi: 10.1016/0045-7949(90)90137-Q.10.1016/0045-7949(90)90137-Q Search in Google Scholar

21. D. Shaw and Y. H. Huang, “Buckling behavior of a central cracked thin plate under tension,” Eng. Fract. Mech., vol. 35, no. 6, pp. 1019–1027, Jan. 1990, doi: 10.1016/0013-7944(90)90129-5.10.1016/0013-7944(90)90129-5 Search in Google Scholar

22. J. K. Paik, Y. V. Satish Kumar, and J. M. Lee, “Ultimate strength of cracked plate elements under axial compression or tension,” Thin-Walled Struct., vol. 43, no. 2, pp. 237–272, Feb. 2005, doi: 10.1016/j.tws.2004.07.010.10.1016/j.tws.2004.07.010 Search in Google Scholar

23. A. Babazadeh and M. R. Khedmati, “Ultimate strength of cracked ship structural elements and systems: A review,” Eng. Fail. Anal., vol. 89, pp. 242–257, Jul. 2018, doi: 10.1016/j. engfailanal.2018.03.003. Search in Google Scholar

24. R. Seifi and N. Khoda-yari, “Experimental and numerical studies on buckling of cracked thin-plates under full and partial compression edge loading,” Thin-Walled Struct., vol. 49, no. 12, pp. 1504–1516, Dec. 2011, doi: 10.1016/j. tws.2011.07.010. Search in Google Scholar

25. X. H. Shi, J. Zhang, and C. Guedes Soares, “Experimental study on collapse of cracked stiffened plate with initial imperfections under compression,” Thin-Walled Struct., vol. 114, pp. 39–51, May 2017, doi: 10.1016/j.tws.2016.12.028.10.1016/j.tws.2016.12.028 Search in Google Scholar

26. A. Rahbar-Ranji and A. Zarookian, “Ultimate strength of stiffened plates with a transverse crack under uniaxial compression,” Ships Offshore Struct., vol. 10, no. 4, pp. 416–425, Jul. 2015, doi: 10.1080/17445302.2014.942078.10.1080/17445302.2014.942078 Search in Google Scholar

27. C. Cui, P. Yang, C. Li, and T. Xia, “Ultimate strength characteristics of cracked stiffened plates subjected to uniaxial compression,” Thin-Walled Struct., vol. 113, pp. 27–38, Apr. 2017, doi: 10.1016/j.tws.2017.01.003.10.1016/j.tws.2017.01.003 Search in Google Scholar

28. S. Saad-Eldeen, Y. Garbatov, and C. Soares, “Emergency repair of a single hull structure with locked cracks,” in Maritime Technology and Engineering III, CRC Press, 2016, pp. 521–529.10.1201/b21890-69 Search in Google Scholar

29. S. Saad-Eldeen, Y. Garbatov, and C. G. Soares, “Strength enhancement of cracked swash bulkheads of jack-up spudcan,” in Progress in the Analysis and Design of Marine Structures, CRC Press, 2017, pp. 763–770.10.1201/9781315157368-98 Search in Google Scholar

30. A. Babazadeh and M. R. Khedmati, “Empirical formulations for estimation of ultimate strength of cracked continuous unstiffened plates used in ship structure under in-plane longitudinal compression,” Eng. Fail. Anal., vol. 100, pp. 470–484, Jun. 2019, doi: 10.1016/j.engfailanal.2019.02.051.10.1016/j.engfailanal.2019.02.051 Search in Google Scholar

31. K. Woloszyk and Y. Garbatov, “Analysis of Ultimate Compressive Strength of Cracked Plates with the Use of DoE Techniques,” Polish Marit. Res., vol. 27, no. 3, pp. 109–120, Sep. 2020, doi: 10.2478/pomr-2020-0052.10.2478/pomr-2020-0052 Search in Google Scholar

32. L. Feng, D. Li, H. Shi, Q. Zhang, and S. Wang, “A study on the ultimate strength of ship plate with coupled corrosion and crack damage,” Ocean Eng., vol. 200, p. 106950, Mar. 2020, doi: 10.1016/j.oceaneng.2020.106950.10.1016/j.oceaneng.2020.106950 Search in Google Scholar

33. J. Melcher, Z. Kala, M. Holický, M. Fajkus, and L. Rozlívka, “Design characteristics of structural steels based on statistical analysis of metallurgical products,” J. Constr. Steel Res., vol. 60, no. 3–5, pp. 795–808, Mar. 2004, doi: 10.1016/S0143-974X(03)00144-5.10.1016/S0143-974X(03)00144-5 Search in Google Scholar

34. A. J. Sadowski, J. M. Rotter, T. Reinke, and T. Ummenhofer, “Statistical analysis of the material properties of selected structural carbon steels,” Struct. Saf., vol. 53, pp. 26–35, Mar. 2015, doi: 10.1016/j.strusafe.2014.12.002.10.1016/j.strusafe.2014.12.002 Search in Google Scholar

35. ANSYS, “Online Manuals, Release 19.” 2019. Search in Google Scholar

36. M. Tekgoz, Y. Garbatov, and C. Guedes Soares, “Finite element modelling of the ultimate strength of stiffened plates with residual stresses,” in Analysis and Design of Marine Structures, CRC Press, 2013, pp. 309–317.10.1201/b15120-42 Search in Google Scholar

37. M. Tekgoz and Y. Garbatov, “Ultimate strength of a plate accounting for shakedown effect and corrosion degradation,” in Developments in Maritime Transportation and Exploitation of Sea Resources, CRC Press, 2013, pp. 395–403.10.1201/b15813-49 Search in Google Scholar

38. D. C. Montgomery, Design and Analysis of Experiments. John Wiley & Sons Ltd, USA, 2006. Search in Google Scholar

39. S. M. Dowdy, S. Wearden, and D. M. Chilko, Statistics for research. Wiley-Interscience, 2004.10.1002/0471477435 Search in Google Scholar

40. C. Daniel, “Use of Half-Normal Plots in Interpreting Factorial Two-Level Experiments,” Technometrics, vol. 1, no. 4, pp. 311–341, Nov. 1959, doi: 10.1080/00401706.1959.10489866.10.1080/00401706.1959.10489866 Search in Google Scholar

eISSN:
2083-7429
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences