Acceso abierto

Influence of the Hull Shape on the Energy Demand of a Small Inland Vessel with Hybrid Propulsion


Cite

1. W. Yu, P. Zhou, H. Wang, “Evaluation on the energy efficiency and emissions reduction of a short-route hybrid sightseeing ship,” Ocean Engineering, vol. 162, pp. 34-42, August 2018. https://doi.org/10.1016/j.oceaneng.2018.05.01610.1016/j.oceaneng.2018.05.016 Search in Google Scholar

2. W. Litwin, W. Leśniewski, J. Kowalski, “Energy efficient and environmentally friendly hybrid conversion of inland passenger vessel,” Polish Maritime Research, vol. 24, pp. 77-84, 2017. DOI:10.1515/pomr-2017-013810.1515/pomr-2017-0138 Search in Google Scholar

3. R. D. Geertsma, R. R. Negenborn, K. Visser, J. J. Hopman, “Design and control of hybrid power and propulsion systems for smart ships: A review of developments,” Applied Energy, vol. 194, pp. 30-54, 2017. https://doi.org/10.1016/j.apenergy.2017.02.06010.1016/j.apenergy.2017.02.060 Search in Google Scholar

4. [4] Y. Yuan, J. Wang, X. Yan, Q. Li, T. Long, “A design and experimental investigation of a large scale solar energy/diesel generator powered hybrid ship,” Energy, vol. 165 Part A, pp. 965-978, 2018. https://doi.org/10.1016/j.energy.2018.09.08510.1016/j.energy.2018.09.085 Search in Google Scholar

5. Y. Yuan, J. Wang, X. Yan, B. Shen, Teng Long, “A review of multi-energy hybrid power system for ships,” Renewable and Sustainable Energy Reviews, vol. 132, October 2020. https://doi.org/10.1016/j.rser.2020.11008110.1016/j.rser.2020.110081 Search in Google Scholar

6. J. Michalski, Podstawy projektowania okrętów, Wydawnictwo Politechniki Gdańskiej, 2016. Search in Google Scholar

7. P. Wu, J. Partridge, R. Bucknall, “Cost-effective reinforcement learning energy management for plug-in hybrid fuel cell and battery ships,” Applied Energy, vol. 275, October 2020. https://doi.org/10.1016/j.apenergy.2020.11525810.1016/j.apenergy.2020.115258 Search in Google Scholar

8. J. Hou, Z. Song, H. Hofmann, J. Sun, “Adaptive model predictive control for hybrid energy storage energy management in all-electric ship microgrids,” Energy Conversion and Management, vol. 198, October 2019. https://doi.org/10.1016/j.enconman.2019.11192910.1016/j.enconman.2019.111929 Search in Google Scholar

9. R. Tang, Q. An, F. Xu, X. Zhang, X. Li, J. Lai, Z. Dong, “Optimal operation of hybrid energy system for intelligent ship: An ultrahigh-dimensional model and control method,” Energy, vol. 211, November 2020. DOI: 10.1016/j. energy.2020.119077 Search in Google Scholar

10. T. McCoy, “Electric Ships: Past, Present, and Future,” IEEE Electrification Mag., 3, p. 4-11, 2015.10.1109/MELE.2015.2414291 Search in Google Scholar

11. J. S. Calton, “Chapter 15 – Azimuthing and Podded Propulsors,” in Marine Propellers and Propulsion (4th ed.), Elsevier, 2019, pp. 389-398.10.1016/B978-0-08-100366-4.00015-8 Search in Google Scholar

12. A. Ritari, J. Huotari, J. Haame, K. Tammi, “Hybrid electric topology for short sea ships with high auxiliary power availability requirement,” Energy, vol. 190, 2020. https://doi.org/10.1016/j.energy.2019.11635910.1016/j.energy.2019.116359 Search in Google Scholar

13. J. Yuan, L. Yang, Qu Chen, “Intelligent energy management strategy based on hierarchical approximate global optimization for plug-in fuel cell hybrid electric vehicles,” International Journal of Hydrogen Energy, vol. 43, issue 16, 2018. DOI: 10.1016/j.ijhydene.2018.03.03310.1016/j.ijhydene.2018.03.033 Search in Google Scholar

14. F. Balsamo, C. Capasso, D. Lauria, O. Veneri, “Optimal design and energy management of hybrid storage systems for marine propulsion applications,” Applied Energy, vol. 278, 2020. https://doi.org/10.1016/j.apenergy.2020.11562910.1016/j.apenergy.2020.115629 Search in Google Scholar

15. P. Gelesz, A. Karczewski, J. Kozak, W. Litwin, Ł. Piątek, “Design methodology for small passenger ships on the example of the ferryboat Motława 2 driven by hybrid propulsion system,” Polish Maritime Research, vol. 24, 2017. https://doi.org/10.1515/pomr-2017-002310.1515/pomr-2017-0023 Search in Google Scholar

16. R. Vie, “Commercial experience with electric propulsion on passenger cruise vessels,” in: Proceedings of the IMarE All-Electric Ship Conference, London (UK), 1998, pp. 1–9. https://doi.org/10.1016/j.ifacol.2017.08.22910.1016/j.ifacol.2017.08.229 Search in Google Scholar

17. T. A. Rodrigues, G. S. Neves, L. C. S. Gouveia, M. A. Abi-Ramia Jr., M. Z. Fortes, S. Gomes Jr., “Impact of electric propulsion on the electric power quality of vessels,” Electric Power Systems Research, vol. 155, pp. 350-362, 2018. https://doi.org/10.1016/j.epsr.2017.11.00610.1016/j.epsr.2017.11.006 Search in Google Scholar

18. F. D. Kanellos, A. Anvari-Moghaddam, J. M. Guerrero, “A cost-effective and emission-aware power management system for ship with integrated full electric propulsion,” Electric Power Systems Research, vol. 150, pp. 63-75, 2017. https://doi.org/10.1016/j.epsr.2017.05.00310.1016/j.epsr.2017.05.003 Search in Google Scholar

19. M. Kunicka, W. Litwin, “Energy demand of short-range shuttle ferry with series hybrid propulsion depending on the navigation strategy,” Energies, vol. 12, pp. 1-14, 2019. https://doi.org/10.3390/en1218349910.3390/en12183499 Search in Google Scholar

20. A. M. Bassam, A. B. Phillips, S. R. Turnock, P. A. Wilson, “Development of a multi-scheme energy management strategy for a hybrid fuel cell driven passenger ship,” International Journal of Hydrogen Energy, vol. 42, pp. 623-635, 2017. https://doi.org/10.1016/j.ijhydene.2016.08.20910.1016/j.ijhydene.2016.08.209 Search in Google Scholar

21. A. Karczewski, Ł. Patek, “Reducing the environmental impact of public water transportation systems by parametric design and optimization of vessel’s hull. Study of Gdańsk’s electric passenger ferry (2015-2016),” in Education for Research, Research for Creativity, vol. 1. Architecture for the Society of Knowledge. Search in Google Scholar

22. J. P. Michalski, Metody przydatne do wspomaganego komputerem projektowania wstępnego statków śródlądowych. Wydawnictwo Politechniki Gdańskiej, 2007. Search in Google Scholar

23. J. Holtrop, “A statistical re-analysis of resistance and propulsion data”, in International Shipbuilding Progress, vol. 31, November 1984 http://resolver.tudelft.nl/uuid:ca12a502-fc85-45e4-a078-db7284127e3c Search in Google Scholar

24. A. Karczewski, J. Kozak, “Comparison of selected parametric methods for prediction of inland waterways ship hull resistance in towing tank test,” Polish Maritime Research, vol. 25, 2018. https://doi.org/10.2478/pomr-2018-002510.2478/pomr-2018-0025 Search in Google Scholar

25. A. F. Molland, S. R. Turnock, D. A. Hudson, Ship Resistance and Propulsion: Practical Estimation of Ship Propulsive Power, Cambridge University Press, 2011. https://doi.org/10.1017/978131649419610.1017/9781316494196 Search in Google Scholar

26. J. Holtrop, “Statistical data for the extrapolation of model performance tests,” International Shipbuilding Progress, vol. 25, 1978.10.3233/ISP-1978-2528502 Search in Google Scholar

27. M. Kunicka, W. Litwin, “Energy efficient small inland passenger shuttle ferry with hybrid propulsion – concept design, calculations and model tests,” Polish Maritime Research, vol. 26, 2019. https://doi.org/10.2478/pomr-2019-002810.2478/pomr-2019-0028 Search in Google Scholar

28. ITTC Recommended Procedures and Guidelines: 7.5-02-02-02 General Guideline for Uncertainty Analysis in Resistance Tests, ITTC, 2014. https://ittc.info/media/4056/75-02-02-021.pdf accessed on 21.06.2021 Search in Google Scholar

29. C. Prohaska, “A simple method for the evaluation of the form factor and the low speed wave resistance,” in Proceedings of the 11th International Towing Tank Conference, ITTC’66, Tokyo, 1966. Search in Google Scholar

30. ITTC Recommended Procedure, Resistance Test 7.5-02-02-01, 2011. http://ittc.info/media/1217/75-02-02-01.pdf accessed on 21.06.202110.18259/acs.2011001 Search in Google Scholar

31. W. Litwin, W. Leśniewski, D. Piątek, “Multi-source-supplied parallel hybrid propulsion of the inland passenger ship STA.H. Research work on energy efficiency of a hybrid propulsion system operating in the electric motor drive model,” Polish Maritime Research, vol. 12, 2019. https://doi.org/10.2478/pomr-2013-003110.2478/pomr-2013-0031 Search in Google Scholar

32. W. Litwin, W. Leśniewski, D. Piątek, “Experimental research on the energy efficiency of a parallel hybrid drive for an inland ship,” Energies, vol. 12, issue 9, 2019. https://doi.org/10.3390/en1209167510.3390/en12091675 Search in Google Scholar

33. S. Jafarzadeh, I. Schjolberg, “Operational profiles of ships in Norwegian waters: An activity-based approach to assess the benefits of hybrid and electric propulsion,” Transportation Research Part D: Transport and Environment, vol. 65, pp. 500-523, 2018. https://doi.org/10.1016/j.trd.2018.09.02110.1016/j.trd.2018.09.021 Search in Google Scholar

34. [34] J. Holtrop, “A statistical re-analysis of resistance and propulsion data,” Marine Technology, vol. 38, no. 3, July 2001.10.5957/mt1.2001.38.3.145 Search in Google Scholar

eISSN:
2083-7429
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences