Acceso abierto

Experimental Study and Numerical Simulation of the Water Entry of a Ship-Like Symmetry Section with an Obvious Bulbous Bow


Cite

1. S.E. Hirdaris, W. Bai, D. Dessi, et al., “Loads for use in the design of ships and offshore structures”, Ocean Engineering. 2014. Vol. 78, 131-174, doi: 10.1016/j.oceaneng.2013.09.012.10.1016/j.oceaneng.2013.09.012 Search in Google Scholar

2. J. JIAO, H. REN, C. CHEN. Model Testing for Ship Hydroelasticity: A Review and Future Trends[J]. Journal of Shanghai Jiao Tong University (Science), 2017, 22(6): 641-650.10.1007/s12204-017-1886-5 Search in Google Scholar

3. J. Jiao, H. Yu, C. Chen, et al., “Time-domain numerical and segmented model experimental study on ship hydroelastic responses and whipping loads in harsh irregular seaways”, Ocean Engineering. 2019. Vol. 185, 59-81, doi: 10.1016/j. oceaneng.2019.05.039. Search in Google Scholar

4. S.Y. Sun, H.L. Chen, and G. Xu, “ Water Entry of A Wedge Into Waves in Three Degrees Offreedom”, Polish Maritime Research. 2019. Vol. 26(1), 117-124, doi:10.2478/ pomr-2019-0013. Search in Google Scholar

5. T. Von Karman, “ The impact on seaplane floats during landing”, NACA Technical note no.321,1929. Search in Google Scholar

6. H.Wagner, “ Uber Stoss- und Gleitvorgange an der Oberflache von Flussigkeiten. “ZAMM, 12, 193–215,1932.10.1002/zamm.19320120402 Search in Google Scholar

7. Z. Dobrovol’skaya “On some problems of similarity flow of fluid with a free surface”, Journal of Fluid Mechanics. 1969. Vol. 36, 805-829, doi: 10.1017/S0022112069001996.10.1017/S0022112069001996 Search in Google Scholar

8. R. Zhao and O. Faltinsen, “Water entry of two-dimensional bodies”, Journal of Fluid Mechanics. 1993. Vol. 246, 593-612, doi: 10.1017/S002211209300028X.10.1017/S002211209300028X Search in Google Scholar

9. J. Wang and O.M. Faltinsen, “Improved numerical solution of Dobrovol’skaya’s boundary integral equations on similarity flow for uniform symmetrical entry of wedges”, Applied Ocean Research. 2017. Vol. 66, 23-31, doi: 10.1016/j. apor.2017.05.006. Search in Google Scholar

10. A. Kamath, H. Bihs, and O.A. Arntsen, “Study of Water Impact and Entry of a Free Falling Wedge Using Computational Fluid Dynamics Simulations”, Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme. 2017. Vol. 139(3), doi: 10.1115/1.4035384.10.1115/1.4035384 Search in Google Scholar

11. E.M. Yettou, A. Desrochers, and Y. Champoux, “Experimental study on the water impact of a symmetrical wedge”, Fluid Dynamics Research. 2006. Vol. 38(1), 47-66, doi: 10.1016/j.fluiddyn.2005.09.003.10.1016/j.fluiddyn.2005.09.003 Search in Google Scholar

12. M. Jalalisendi, S. Zhao, and M. Porfiri, “Shallow water entry: modeling and experiments”, Journal of Engineering Mathematics. 2017. Vol. 104(1), 131-156, doi: 10.1007/ s10665-016-9877-3. Search in Google Scholar

13. R. Panciroli, A. Shams, and M. Porfiri, “Experiments on the water entry of curved wedges: High speed imaging and particle image velocimetry”, Ocean Engineering. 2015. Vol. 94, 213-222, doi: 10.1016/j.oceaneng.2014.12.004.10.1016/j.oceaneng.2014.12.004 Search in Google Scholar

14. P. Yu, H. Li, and M.C. Ong, “Numerical study on the water entry of curved wedges”, Ships and Offshore Structures. 2018. Vol. 13(8), 885-898, doi: 10.1080/17445302.2018.1471776.10.1080/17445302.2018.1471776 Search in Google Scholar

15. M. Barjasteh, H. Zeraatgar, and M.J. Javaherian, “An experimental study on water entry of asymmetric wedges”, Applied Ocean Research. 2016. Vol. 58, 292-304, doi: 10.1016/j.apor.2016.04.013.10.1016/j.apor.2016.04.013 Search in Google Scholar

16. Y. Chen, T. Khabakhpasheva, K.J. Maki, et al., “Wedge impact with the influence of ice”, Applied Ocean Research. 2019. Vol. 89, 12-22, doi: 10.1016/j.apor.2019.05.001.10.1016/j.apor.2019.05.001 Search in Google Scholar

17. J. Aarsnes. “Drop test with ship sections - effect of roll angle”, Report 603834.00.01. Norwegian Marine Technology Research Institute, Trondheim, Norway, 1996. Search in Google Scholar

18. R.Zhao, O.M. Faltinsen and J. Aarsnes. “Water entry of arbitrary two-dimensional sections with and without flow separation”, Proceedings of the 21st symposium on naval hydrodynamics, Trondheim, Norway, National Academy Press, Washington, DC, USA, 1996. Search in Google Scholar

19. H. Sun and O.M. Faltinsen, “Water entry of a bow-flare ship section with roll angle”, Journal of Marine Science and Technology. 2009. Vol. 14(1), 69-79, doi: 10.1007/ s00773-008-0026-1. Search in Google Scholar

20. X. Zhu, O.M. Faltinsen, C. Hu .”Water entry loads on heeled ship sections”. In: Proc. 16th Int Conf Hydrodyn Ship Design, Gdansk, Poland, 2005. Search in Google Scholar

21. S. Wang and C. Guedes Soares, “Slam induced loads on bow-flared sections with various roll angles”, Ocean Engineering. 2013. Vol. 67, 45-57, doi: 10.1016/j.oceaneng.2013.04.009.10.1016/j.oceaneng.2013.04.009 Search in Google Scholar

22. H. Xie, H. Ren, H. Li, et al., “Numerical prediction of slamming on bow-flared section considering geometrical and kinematic asymmetry”, Ocean Engineering. 2018. Vol. 158, 311-330, doi: 10.1016/j.oceaneng.2018.04.033.10.1016/j.oceaneng.2018.04.033 Search in Google Scholar

23. MOERI. Wave Induced Loads on Ships. Technical Report No BSPIS7230-10306-6. Maritime Ocean Engineering Research Institute, Daejeon, Korea, 2013. Search in Google Scholar

24. Y. Kim, K.-K. Yang, J.-H. Kim, et al., “Study of Water-entry Impact of Wedge and Ship-like Section Using Potential Theories and CFD”, International Journal of Offshore and Polar Engineering. 2017. Vol. 27(2), 168-176, doi: 10.17736/ ijope.2017.jc670. Search in Google Scholar

25. L. Yang, H. Yang, S. Yan, et al., “Numerical Investigation of Water-Entry Problems Using IBM Method”, International Journal of Offshore and Polar Engineering. 2017. Vol. 27(2), 152-159, doi: 10.17736/ijope.2017.jc687.10.17736/ijope.2017.jc687 Search in Google Scholar

26. J. Park, J.H. Choi, H.-h. Lee, et al., “Experimental study on the effects of stern bulb arrangement on the slamming load”, International Journal of Naval Architecture and Ocean Engineering. 2020. Vol. 12, 518-530, doi: 10.1016/j. ijnaoe.2020.03.006. Search in Google Scholar

27. B. Guzel and F.C. Korkmaz, “ Reducing Water Entry Impact Loads on Marine Structures by Surface Modification”, Brodogradnja. 2020. Vol. 71(1), 1-18, doi: 10.21278/ brod71101. Search in Google Scholar

28. H. Luo, H. Wang, and C. Guedes Soares, “Numerical and experimental study of hydrodynamic impact and elastic response of one free-drop wedge with stiffened panels”, Ocean Engineering. 2012. Vol. 40, 1-14, doi: 10.1016/j. oceaneng.2011.11.004. Search in Google Scholar

29. D. Van Nuffel, K.S. Vepa, I. De Baere, et al., “Study on the Parameters Influencing the Accuracy and Reproducibility of Dynamic Pressure Measurements at the Surface of a Rigid Body During Water Impact”, Experimental Mechanics. 2013. Vol. 53(2), 131-144, doi: 10.1007/s11340-012-9619-z.10.1007/s11340-012-9619-z Search in Google Scholar

30. B. Zhang, “ Research on Ship Hull Optimisation of High-Speed Ship Based on Viscous Flow/Potential Flow Theory “, Polish Maritime Research. 2020. Vol. 27(1), 18-28, doi: 10.2478/pomr-2020-0002.10.2478/pomr-2020-0002 Search in Google Scholar

31. L.-F. Hu, H. Qi, Y. Li, et al., “The CFD Method-Based Research on Damaged Ship’s Flooding Process in Time-Domain”, Polish Marit. Res., vol. 26, no. 1, 2019, doi: 10.2478/pomr-2019-0009.10.2478/pomr-2019-0009 Search in Google Scholar

32. H. Nguyen Thi Ngoc, B. Vu Ngoc, T. Tran Ngoc, et al.,” Numerical Investigating the Effect of Water Depth on Ship Resistance Using RANS CFD Method”, Polish Marit. Res., vol. 26, no. 3, 2019, doi: 10.2478/pomr-2019-0046.10.2478/pomr-2019-0046 Search in Google Scholar

33. Q. Wang, B. Zhang, P. Yu, et al., “Numerical Investigation on the Water Entry of Several Different Bow-Flared Sections”, Applied Sciences-Basel. 2020. Vol. 10(22), doi: 10.3390/app10227952.10.3390/app10227952 Search in Google Scholar

34. S. Johannessen, “Use of CFD to Study Hydrodynamic Loads on Free-Fall Lifeboats in the Impact Phase: A Verification and Validation Study,” M.Sc. Thesis, Norwegian University of Science and Technology, 2012. Search in Google Scholar

35. R.N. Bilandi, S. Jamei, F. Roshan, et al., “Numerical simulation of vertical water impact of asymmetric wedges by using a finite volume method combined with a volume-of-fluid technique”, Ocean Engineering. 2018. Vol. 160, 119-131, doi: 10.1016/j.oceaneng.2018.04.043.10.1016/j.oceaneng.2018.04.043 Search in Google Scholar

36. A. Bereznitski, Slamming: The role of hydroelasticity [J]. Int Shipbuild Progr,2001,48(4):333-351. Search in Google Scholar

37. S.-L. Chuang, “Experiments on Slamming of Wedge-Shaped Bodies”, Journal of Ship Research. 1967. Vol. 11, 190-198, doi: 10.5957/jsr.1967.11.3.190.10.5957/jsr.1967.11.3.190 Search in Google Scholar

38. O.A. Hermundstad and T. Moan, “Numerical and experimental analysis of bow flare slamming on a Ro-Ro vessel in regular oblique waves”, Journal of Marine Science and Technology. 2005. Vol. 10(3), 105-122, doi: 10.1007/ s00773-005-0192-3. Search in Google Scholar

39. J.-H. Kim, Y. Kim, R.-H. Yuck, et al., “Comparison of slamming and whipping loads by fully coupled hydroelastic analysis and experimental measurement”, Journal of Fluids and Structures. 2015. Vol. 52, 145-165, doi: 10.1016/j. jfluidstructs.2014.10.011. Search in Google Scholar

eISSN:
2083-7429
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences