Acceso abierto

Automatic Control of Ship Motion Conducting Search in Open Waters


Cite

1. Ai Y., J. Lu, L.-L. Zhang L-L (2015): The optimization model for the location of maritime emergency supplies reserve bases and the configuration of salvage vessel. Transportation Research Part Vol. 83,170–188.10.1016/j.tre.2015.09.006Search in Google Scholar

2. Azofra M., Pérez-Labajos C.A., Blanco B. (2007): Optimum placement of sea resources. Safety Sciencen Vol. 45 (9), 941–951.Search in Google Scholar

3. Banda O.A.V. (2015): A Bayesian network for assessing the collision induced risk of an oil accident in the Gulf of Finland. Environmental Science & Technology. 49, 5301−5309, doi: 10.1021/es501777g.10.1021/es501777g25780862Search in Google Scholar

4. Burns R., Richter R. (1996): Neural-network approach to the control of surface ships. Control Eng. Practice, Vol. 4, No. 3, 411–416.Search in Google Scholar

5. Z. Burciu Z. (2010): Bayesian methods in reliability of search and rescue action. Polish Maritime Research. 4(67), Vol. 17, 72–78, 2010, doi: 10.2478/v10012-010-0039-76.Search in Google Scholar

6. Goerlandt F, Torabihaghighi, Kujala P.(2013): A model for evaluating performance and reliability of the voluntary maritime rescue system in the Gulf of Finland. 11th International Conference Probabilistic Safety, Reliability and Risk Analysis: Beyond the Horizon, Amsterdam, Netherlands. 2013, 1351–1356.Search in Google Scholar

7. Guoxiang L., Maofeng L., (2010): SARGIS: a GIS-based decision-making support system for maritime search and rescue’, International Conference on E-Business and E-Government, doi: 10.1109/ICEE.2010.398.10.1109/ICEE.2010.398Search in Google Scholar

8. H. N. Esfahani H.N., Szlapczynski R. (2019): Model Predictive Super-Twisting Sliding Mode Control for an Autonomous Surface Vehicle. Polish Maritime Research. No. 3, Vol. 26, 163–171, doi: 10.2478/pomr-2019-0057.10.2478/pomr-2019-0057Search in Google Scholar

9. Fang M.-C., Luo J.-H. (2007): On the track keeping and roll reduction of the ship in random waves using different sliding mode controllers. Ocean Engineering 34, 479–488.10.1016/j.oceaneng.2006.03.004Search in Google Scholar

10. Fossen T.I. (2002): Marine control systems: guidance, navigation and control of ships, rigs and underwater vehicles. Marine Cybernetics. Trondheim. ISBN 82-92356-00-2.Search in Google Scholar

11. Frost J.R., Cooper D.C., Robe Q. (2003): Compatibility of Land SAR Procedures with Search Theory. U.S. Department of Homeland Security United States Coast Guard Operations (G-OPR) Washington, D.C. 20593-0001.Search in Google Scholar

12. Frost J.R.,. Stone L.D. (2001): Review of search theory: Advances and applications to search and rescue decision support. US Coast Guard Research and Development Center, Groton. 2001.Search in Google Scholar

13. Koopman B.O. (1946): Search and screening. OEG Report No. 56, The Summary Reports Group of the Columbia University Division of War Research, Alexandria, Virginia, Center for Naval Analyses. 1946.Search in Google Scholar

14. 14. Koopman B.O. (1980): Search and screening: general principles with historical applications. Revised. New York, Pergamon Press.Search in Google Scholar

15. Kula K.S. (2015): Autopilot Using the Nonlinear Inverse Ship Model. Marine Navigation and Safety of Sea Transportation, CRC Press, ISBN: 978-1-138-02858-6, 101–108.Search in Google Scholar

16. Kula K.S.,Tomera M. (2017): Control system of training ship keeping the desired path consisting of straight-lines and circular arcs. TransNav Journal Vol. 11 No. 4. 2017, 711–719, doi: 10.12716/1001.11.04.19.10.12716/1001.11.04.19Search in Google Scholar

17. IAMSAR Manual, IMO/ICAO-International Aeronautical and Maritime Search and Rescue Manual, Vol. III, Mission Co-ordination, London/Montreal. 2008.Search in Google Scholar

18. Li L. (2006): Rescue vessel location modeling. MSc thesis. Halifax, Canada, Dalhousie University, Department of Industrial Engineering.Search in Google Scholar

19. Liu Y., Bu R., Gao X. (2018): Ship Trajectory Tracking Control System Design Based on Sliding Mode Control Algorithm, Polish Maritime Research. No 3,Vol. 25, 26–34, doi: 10.2478/pomr-2018-0093.10.2478/pomr-2018-0093Search in Google Scholar

20. Morari M., Zafiriou E (1989): Robust process control. Englewood Cliffs, NJ Prentice Hall, 1989, ISBN-13:978-0137821532.Search in Google Scholar

21. Nomoto K., Taguchi T., Honda K., Hirano S. (1957): On the steering qualities of ships. International Shipbuilding Progress 4, 354–370.10.3233/ISP-1957-43504Search in Google Scholar

22. Norrington L., Quigley J., Russel A., Van der Meer R. (2008): Modeling the reliability of search and rescue operations with Bayesian Networks. Reliability Engineering & System Safety Vol. 93(7), 940–949.10.1016/j.ress.2007.03.006Search in Google Scholar

23. Richter R., Burns R. (1993): An artificial neural network autopilot for small vessels. Proceedings of the 1st Conference of the UK Simulation Society, Edinburgh, 168–172.Search in Google Scholar

24. Stone L.D.(1989): Theory of optimal search. Military Applications Section. Operations Research Society of America, Arlington, Virginia, ORSA Books.Search in Google Scholar

25. Velasco F.J., López E.(2000): Predictive Control of Ship Steering Autopilots. 2nd International Congress on Maritime Technological Innovations and Research, Spain, 89–98.Search in Google Scholar

26. Witkowska A., R. Śmierzchalski (2012): Designing a ship course controller by applying the adaptive backstepping method. Int. J. Appl. Math. Comput. Sci., Vol. 22, No. 4, 985–997, doi: 10.2478/v10006-012-0073-y.10.2478/v10006-012-0073-ySearch in Google Scholar

27. Tomera M. (2018): Switching-Based Multi-Operational Control of Ship Motion. Akademicka Oficyna Wydawnicza EXIT. Warszawa.Search in Google Scholar

28. Tzeng. C.-Y. (1999): An internal model control approach to the design of yaw-rate-control ship-steering autopilot, IEEE Journal of Oceanic Engineering, Vol. 24, No. 4, pp. 507–513.Search in Google Scholar

29. Yang Y.S., Ren J.S. (2003): Adaptive fuzzy robust tracking controller design via small gain approach and its application. IEEE Transactions on Fuzzy Systems, 11, 783–795.10.1109/TFUZZ.2003.819837Search in Google Scholar

30. Zeid I., Frost J.R. (2005) A decision support system for Canadian search and rescue operations’, European Journal of Operation Research. 162 3, 630–653.Search in Google Scholar

31. Zwierzewicz Z. (2015): The design of ship autopilot by applying observer-based feedback linearization. Polish Maritime Research 22(1), 16–21.10.1515/pomr-2015-0003Search in Google Scholar

eISSN:
2083-7429
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences