Acceso abierto

Dynamically Positioned Ship Steering Making Use of Backstepping Method and Artificial Neural Networks


Cite

1. Boulkroune, A., N. Bounar, M. M’Saad, M. Farza: Indirect adaptive fuzzy control scheme based on observer for nonlinear systems: A novel SPR-filter approach, Neurocomputing. 135, 2014 pp. 378-387.10.1016/j.neucom.2013.12.011Search in Google Scholar

2. Buhmann, M.D.: Radial basis functions: theory and implementations, Cambridge University Press 2003.10.1017/CBO9780511543241Search in Google Scholar

3. Chan, A.K., G.A. Becus: Online adaptation of RBF centers for adaptive control, in: Proceedings of 1995 American Control Conference - ACC’95, American Autom Control Council, 1995 pp. 3770-3774.Search in Google Scholar

4. Cover, T.M.: Geometrical and Statistical Properties of Systems of Linear Inequalities with Applications in Pattern Recognition, IEEE Transations on Electronic Computers 1965, pp. 326-334.10.1109/PGEC.1965.264137Search in Google Scholar

5. Cpałka, K.: Design of Interpretable Fuzzy Systems, Springer 2017.10.1007/978-3-319-52881-6Search in Google Scholar

6. Du, J., X. Hu, H. Liu, C.L.P. Chen: Adaptive robust output feedback control for a marine dynamic positioning system based on a high-gain observer, IEEE Transactions on Neural Networks and Learning Systems. 26, 2015 pp. 2775-2786.10.1109/TNNLS.2015.239604425769172Search in Google Scholar

7. Fossen, T.I., S.P. Berge: Nonlinear vectorial backstepping design for global exponential tracking of marine vessels in the presence of actuator dynamics, in: Proceedings of the 36th IEEE Conference on Decision and Control, IEEE, 1998 pp. 4237-4242.Search in Google Scholar

8. Katebi, M.R., M.J. Grimble, Y. Zhang: Hinf robust control design of dynamic ship positioning, Ieee Process Control Theory Applicatron. 144 1997, pp. 110-120.10.1049/ip-cta:19971030Search in Google Scholar

9. Krstić, M., I. Kanellakopoulos, P. Kokotović: Nonlinear and adaptive control design, Wiley 1995.Search in Google Scholar

10. Kuczkowski, Ł., R. Śmierzchalski: Path planning algorithm for ship collisions avoidance in environment with changing strategy of dynamic obstacles, in: Springer, Cham 2017: pp. 641-650.10.1007/978-3-319-60699-6_62Search in Google Scholar

11. Kwan, C., F.L. Lewis: Robust backstepping control of nonlinear systems using neural networks, Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on. 30, 2000 pp. 753-766.10.1109/3468.895898Search in Google Scholar

12. Lisowski, J.: Game control methods in avoidance of ships collisions, Polish Maritime Research. 19 2012, pp. 3-10.10.2478/v10012-012-0016-4Search in Google Scholar

13. Lisowski, J., A. Lazarowska: The radar data transmission to computer support system of ship safety, Solid State Phenomena. 196 2013, pp. 95-101.10.4028/www.scientific.net/SSP.196.95Search in Google Scholar

14. Mingyu, F., X. Yujie, Z. Li: Bio-inspired Trajectory Tracking Algorithm for Dynamic Positioning Ship with System Uncertainties, Proceedings of the 35th Chinese Control Conference, 2016 pp. 4562-4566.Search in Google Scholar

15. Niksa-Rynkiewicz,T.,Szłapczyński R.: A framework of a ship domain - based near-miss detection method using mamdani neuro-fuzzy classification., Polish Maritime Research, (in review) 2018.10.2478/pomr-2018-0017Search in Google Scholar

16. Orr, M.J.L.: Introduction to Radial Basis Function Networks 1996.Search in Google Scholar

17. Sorensen, A.: A survey of dynamic positioning control systems, Annual Reviews in Control . 35 2011 pp. 123-136.10.1016/j.arcontrol.2011.03.008Search in Google Scholar

18. Swaroop, D., J.K. Hedrick, P.P. Yip, J.C. Gerdes: Dynamic surface control for a class of nonlinear systems, IEEE Transactions on Automatic Control. 45 2000, pp. 1893-1899.10.1109/TAC.2000.880994Search in Google Scholar

19. Szczypta, J., A. Przybył, K. Cpałka: Some Aspects of Evolutionary Designing Optimal Controllers, in: Springer, Berlin, Heidelberg 2013 pp. 91-100.10.1007/978-3-642-38610-7_9Search in Google Scholar

20. Szlapczynski, R., J. Szlapczynska: Customized crossover in evolutionary sets of safe ship trajectories, International Journal of Applied Mathematics and Computer Science. 22 2012.10.2478/v10006-012-0074-xSearch in Google Scholar

21. Tannuri, E.A., A.C. Agostinho, H.M. Morishita, L. Moratelli: Dynamic positioning systems: An experimental analysis of sliding mode control, Control Engineering Practice. 18, 2010 pp. 1121-1132.10.1016/j.conengprac.2010.06.007Search in Google Scholar

22. Witkowska, A.: Control design for slow speed positioning, Proceedings - 27th European Conference on Modelling and Simulation, ECMS 2013 pp. 198-204.10.7148/2013-0198Search in Google Scholar

23. Witkowska, A., R. Smierzchalski: Designing a ship cours controller by applying the adaptive backstepping method, Int. J. Appl. Math. Comput. Sci. 22 2012 pp. 985-997.10.2478/v10006-012-0073-ySearch in Google Scholar

24. Yang, Y., J. Du, G. Li, W. Li, C. Guo: Dynamic Surface Control for Nonlinear Dynamic Positioning System of Ship, in: Advances in Intelligent and Soft Computing, Springer, Berlin, Heidelberg 2012: pp. 237-244.10.1007/978-3-642-27329-2_33Search in Google Scholar

eISSN:
2083-7429
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences