Acceso abierto

Parametrization of subsegmental infarcts using high spatial resolution 2DSTE and synthetic ultrasonic data


Cite

Rebholz B, Almekkawy M. Analysis of Speckle Tracking Methods: Correlation and RF Interpolation. 2020 IEEE 4th International Conference on Image Processing, Applications and Systems (IPAS). Published online December 9, 2020. https://doi.org/10.1109/IPAS50080.2020.9334963 Search in Google Scholar

Fujikura K, Makkiya M, Farooq M, et al. Speckle-Tracking Echocardiography with Novel Imaging Technique of Higher Frame Rate. JCM. 2021;10(10):2095 https://doi.org/10.3390/jcm10102095 Search in Google Scholar

Özer S, Candan L, Özyıldız AG, Turan OE. Evaluation of left ventricular global functions with speckle tracking echocardiography in patients recovered from COVID-19. Int J Cardiovasc Imaging. 2021;37(7):2227-2233. https://doi.org/10.1007/s10554-021-02211-5 Search in Google Scholar

Papangelopoulou K, Orlowska M, Bezy S, et al. High frame rate speckle tracking echocardiography to assess diastolic function. European Heart Journal. 2021;42(Supplement_1). https://doi.org/10.1093/eurheartj/ehab724.031 Search in Google Scholar

Pastore MC, De Carli G, Mandoli GE, et al. The prognostic role of speckle tracking echocardiography in clinical practice: evidence and reference values from the literature. Heart Fail Rev. 2020;26(6):1371-1381. https://doi.org/10.1007/s10741-020-09945-9 Search in Google Scholar

Popescu MR, Bouariu A, Ciobanu AM, Gică N, Panaitescu AM. Pregnancy Complications Lead to Subclinical Maternal Heart Dysfunction—The Importance and Benefits of Follow-Up Using Speckle Tracking Echocardiography. Medicina. 2022;58(2):296. https://doi.org/10.3390/medicina58020296 Search in Google Scholar

Romanowicz J, Ferraro AM, Harrington JK, et al. Pediatric Normal Values and Z Score Equations for Left and Right Ventricular Strain by Two-Dimensional Speckle-Tracking Echocardiography Derived from a Large Cohort of Healthy Children. Journal of the American Society of Echocardiography. 2023;36(3):310-323. https://doi.org/10.1016/j.echo.2022.11.006 Search in Google Scholar

Zhang X, Ruan B, Qiao Z, et al. The Balance between the Left and Right Ventricular Deformation Evaluated by Speckle Tracking Echocardiography Is a Great Predictor of the Major Adverse Cardiac Event in Patients with Pulmonary Hypertension. Diagnostics. 2022;12(9):2266. https://doi.org/10.3390/diagnostics12092266 Search in Google Scholar

Pagourelias ED, Mirea O, Duchenne J, et al. Speckle tracking deformation imaging to detect regional fibrosis in hypertrophic cardiomyopathy: a comparison between 2D and 3D echo modalities. European Heart Journal - Cardiovascular Imaging. 2020;21(11):1262-1272. https://doi.org/10.1093/ehjci/jeaa057 Search in Google Scholar

Aly D, Madan N, Kuzava L, Samrany A, Parthiban A. Comprehensive evaluation of left ventricular deformation using speckle tracking echocardiography in normal children: comparison of three-dimensional and two-dimensional approaches. Cardiovasc Ultrasound. 2022;20(1). https://doi.org/10.1186/s12947-022-00273-6 Search in Google Scholar

Burns RJ, Gibbons RJ, Yi Q, et al. The relationships of left ventricular ejection fraction, end-systolic volume index and infarct size to six-month mortality after hospital discharge following myocardial infarction treated by thrombolysis. Journal of the American College of Cardiology. 2002;39(1):30-36. https://doi.org/10.1016/S0735-1097(01)01711-9 Search in Google Scholar

Stone GW, Selker HP, Thiele H, et al. Relationship Between Infarct Size and Outcomes Following Primary PCI. Journal of the American College of Cardiology. 2016;67(14):1674-1683. https://doi.org/10.1016/j.jacc.2016.01.069 Search in Google Scholar

Trivedi SJ, Campbell T, Stefani LD, Thomas L, Kumar S. Strain by speckle tracking echocardiography correlates with electroanatomic scar location and burden in ischaemic cardiomyopathy. European Heart Journal - Cardiovascular Imaging. 2021;22(8):855-865. https://doi.org/10.1093/ehjci/jeab021 Search in Google Scholar

Choi KM, Kim RJ, Gubernikoff G, Vargas JD, Parker M, Judd RM. Transmural Extent of Acute Myocardial Infarction Predicts Long-Term Improvement in Contractile Function. Circulation. 2001;104(10):1101-1107. https://doi.org/10.1161/hc3501.096798 Search in Google Scholar

Wu Z, Shu X, Fan B, Dong L, Pan C, Chen S. Differentiation of transmural and nontransmural infarction using speckle tracking imaging to assess endocardial and epicardial torsion after revascularization. Int J Cardiovasc Imaging. 2012;29(1):63-70. https://doi.org/10.1007/s10554-012-0050-4 Search in Google Scholar

Chan J, Hanekom L, Wong C, Leano R, Cho GY, Marwick TH. Differentiation of Subendocardial and Transmural Infarction Using Two-Dimensional Strain Rate Imaging to Assess Short-Axis and Long-Axis Myocardial Function. Journal of the American College of Cardiology. 2006;48(10):2026-2033. https://doi.org/10.1016/j.jacc.2006.07.050 Search in Google Scholar

Zhang Y, Chan AKY, Yu CM, et al. Strain Rate Imaging Differentiates Transmural From Non-Transmural Myocardial Infarction. Journal of the American College of Cardiology. 2005;46(5):864-871. https://doi.org/10.1016/j.jacc.2005.05.054 Search in Google Scholar

Ishizu T, Seo Y, Enomoto Y, et al. Experimental validation of left ventricular transmural strain gradient with echocardiographic two-dimensional speckle tracking imaging. European Journal of Echocardiography. 2010;11(4):377-385. https://doi.org/10.1093/ejechocard/jep221 Search in Google Scholar

Waldman LK, Fung YC, Covell JW. Transmural myocardial deformation in the canine left ventricle. Normal in vivo three-dimensional finite strains. Circ Res. 1985;57(1):152-163. https://doi.org/10.1161/01.RES.57.1.152 Search in Google Scholar

Sakurai D, Asanuma T, Masuda K, Hioki A, Nakatani S. Myocardial layer-specific analysis of ischemic memory using speckle tracking echocardiography. Int J Cardiovasc Imaging. 2014;30(4):739-748. https://doi.org/10.1007/s10554-014-0388-x Search in Google Scholar

Tee N, Gu Y, Murni, Shim W. Comparative Myocardial Deformation in 3 Myocardial Layers in Mice by Speckle Tracking Echocardiography. BioMed Research International. 2015;2015:1-8. https://doi.org/10.1155/2015/148501 Search in Google Scholar

Abate E, Hoogslag GE, Leong DP, et al. Association between Multilayer Left Ventricular Rotational Mechanics and the Development of Left Ventricular Remodeling after Acute Myocardial Infarction. Journal of the American Society of Echocardiography. 2014;27(3):239-248. https://doi.org/10.1016/j.echo.2013.12.009 Search in Google Scholar

Adamu U, Schmitz F, Becker M, Kelm M, Hoffmann R. Advanced speckle tracking echocardiography allowing a three-myocardial layer-specific analysis of deformation parameters. European Journal of Echocardiography. 2008;10(2):303-308. https://doi.org/10.1093/ejechocard/jen238 Search in Google Scholar

Leitman M, Lysiansky M, Lysyansky P, et al. Circumferential and Longitudinal Strain in 3 Myocardial Layers in Normal Subjects and in Patients with Regional Left Ventricular Dysfunction. Journal of the American Society of Echocardiography. 2010;23(1):64-70. https://doi.org/10.1016/j.echo.2009.10.004 Search in Google Scholar

Bachner-Hinenzon N, Shlomo L, Khamis H, et al. Detection of small subendocardial infarction using speckle tracking echocardiography in a rat model. Echocardiography. 2016;33(10):1571-1578. https://doi.org/10.1111/echo.13291 Search in Google Scholar

Bachner-Hinenzon N, Ertracht O, Malka A, et al. Layer-specific strain analysis: investigation of regional deformations in a rat model of acute versus chronic myocardial infarction. American Journal of Physiology-Heart and Circulatory Physiology. 2012;303(5):H549-H558. https://doi.org/10.1152/ajpheart.00294.2012 Search in Google Scholar

Cygan S, Kumor M, Żmigrodzki J, Leśniak-Plewińska B, Kowalski M, Kałużyński K. Left ventricular phantoms with inclusions simulating transmural and non-transmural infarctions: FEM and EchoPAC study. Duric N, Heyde B, eds. SPIE Proceedings. Published online March 13, 2017. https://doi.org/10.1117/12.2254350 Search in Google Scholar

Żmigrodzki J, Cygan S, Kałużyński K. Quantitative evaluation of segmentation accuracy of subsegmental infarcts using 2DSTE and synthetic ultrasonic data in a spheroidal model of the left ventricle. Biomedical Signal Processing and Control. 2022;78:103880. https://doi.org/10.1016/j.bspc.2022.103880 Search in Google Scholar

Żmigrodzki J, Cygan S, Kałużyński K. Evaluation of strain averaging area and strain estimation errors in a spheroidal left ventricular model using synthetic image data and speckle tracking. BMC Med Imaging. 2021;21(1). https://doi.org/10.1186/s12880-021-00635-y Search in Google Scholar

Żmigrodzki J, Cygan S, Leśniak-Plewińska B, Kowalski M, KaŁużyński K. Effect of Transmural Extent of the Simulated Infarction in a Left Ventricular Model on Displacement and Strain Distribution Estimated from Synthetic Ultrasonic Data. Ultrasound in Medicine & Biology. 2017;43(1):206-217. https://doi.org/10.1016/j.ultrasmedbio.2016.08.017 Search in Google Scholar

Mele D, Trevisan F, D’Andrea A, et al. Speckle Tracking Echocardiography in Non–ST-Segment Elevation Acute Coronary Syndromes. Current Problems in Cardiology. 2021;46(3):100418. https://doi.org/10.1016/j.cpcardiol.2019.03.007 Search in Google Scholar

Mele D, Fiorencis A, Chiodi E, Gardini C, Benea G, Ferrari R. Polar plot maps by parametric strain echocardiography allow accurate evaluation of non-viable transmural scar tissue in ischaemic heart disease. Eur Heart J Cardiovasc Imaging. 2015;17(6):668-677. https://doi.org/10.1093/ehjci/jev191 Search in Google Scholar

Shi J, Pan C, Kong D, Cheng L, Shu X. Left Ventricular Longitudinal and Circumferential Layer-Specific Myocardial Strains and Their Determinants in Healthy Subjects. Echocardiography. 2015;33(4):510-518. https://doi.org/10.1111/echo.13132 Search in Google Scholar

Cerqueira MD, Weissman NJ, et al. Standardized Myocardial Segmentation and Nomenclature for Tomographic Imaging of the Heart. Circulation. 2002;105(4):539-542. https://doi.org/10.1161/hc0402.102975 Search in Google Scholar

Alessandrini M, Heyde B, Tong L, Bernard O, D’hooge J. Tracking quality in plane-wave versus conventional cardiac ultrasound: A preliminary evaluation in-silico based on a state-of-the-art simulation pipeline. 2015 IEEE International Ultrasonics Symposium (IUS). Published online October 2015. https://doi.org/10.1109/ULTSYM.2015.0390 Search in Google Scholar

Altiok E, Neizel M, Tiemann S, et al. Layer-specific analysis of myocardial deformation for assessment of infarct transmurality: comparison of strain-encoded cardiovascular magnetic resonance with 2D speckle tracking echocardiography. European Heart Journal - Cardiovascular Imaging. 2012;14(6):570-578. https://doi.org/10.1093/ehjci/jes229 Search in Google Scholar

Curiale AH, Vegas-Sánchez-Ferrero G, Aja-Fernández S. Influence of ultrasound speckle tracking strategies for motion and strain estimation. Medical Image Analysis. 2016;32:184-200. https://doi.org/10.1016/j.media.2016.04.002 Search in Google Scholar

De Craene M, Marchesseau S, Heyde B, et al. 3D Strain Assessment in Ultrasound (Straus): A Synthetic Comparison of Five Tracking Methodologies. IEEE Trans Med Imaging. 2013;32(9):1632-1646. https://doi.org/10.1109/TMI.2013.2261823 Search in Google Scholar

D’hooge J, Barbosa D, Gao H, et al. Two-dimensional speckle tracking echocardiography: standardization efforts based on synthetic ultrasound data. Eur Heart J Cardiovasc Imaging. 2015;17(6):693-701. https://doi.org/10.1093/ehjci/jev197 Search in Google Scholar

Grondin J, Sayseng V, Konofagou EE. Cardiac Strain Imaging With Coherent Compounding of Diverging Waves. IEEE Trans Ultrason, Ferroelect, Freq Contr. 2017;64(8):1212-1222. https://doi.org/10.1109/TUFFC.2017.2717792 Search in Google Scholar

Helle-Valle T, Crosby J, Edvardsen T, et al. New Noninvasive Method for Assessment of Left Ventricular Rotation. Circulation. 2005;112(20):3149-3156. https://doi.org/10.1161/CIRCULATIONAHA.104.531558 Search in Google Scholar

Heyde B, Cygan S, Choi HF, et al. Three-dimensional cardiac motion and strain estimation: A validation study in thick-walled univentricular phantoms. 2010 IEEE International Ultrasonics Symposium. Published online October 2010. https://doi.org/10.1109/ULTSYM.2010.5935693 Search in Google Scholar

Korinek J, Kjaergaard J, Sengupta PP, et al. High Spatial Resolution Speckle Tracking Improves Accuracy of 2-Dimensional Strain Measurements: An Update on a New Method in Functional Echocardiography. Journal of the American Society of Echocardiography. 2007;20(2):165-170. https://doi.org/10.1016/j.echo.2006.08.031 Search in Google Scholar

Lamacie MM, Thavendiranathan P, Hanneman K, et al. Quantification of global myocardial function by cine MRI deformable registration-based analysis: Comparison with MR feature tracking and speckle-tracking echocardiography. Eur Radiol. 2016;27(4):1404-1415. https://doi.org/10.1007/s00330-016-4514-0 Search in Google Scholar

Wei-Ning Lee, Ingrassia CM, Fung-Kee-Fung SD, Costa KD, Holmes JW, Konofagou EE. Theoretical Quality Assessment of Myocardial Elastography with In Vivo Validation. IEEE Trans Ultrason, Ferroelect, Freq Contr. 2007;54(11):2233-2245. https://doi.org/10.1109/TUFFC.2007.528 Search in Google Scholar

Lopata RGP, Nillesen MM, Hansen HHG, Gerrits IH, Thijssen JM, de Korte CL. Performance Evaluation of Methods for Two-Dimensional Displacement and Strain Estimation Using Ultrasound Radio Frequency Data. Ultrasound in Medicine & Biology. 2009;35(5):796-812. https://doi.org/10.1016/j.ultrasmedbio.2008.11.002 Search in Google Scholar

Jianwen Luo, Wei-Ning Lee, Konofagou E. Fundamental performance assessment of 2-D myocardial elastography in a phased-array configuration. IEEE Trans Ultrason, Ferroelect, Freq Contr. 2009;56(10):2320-2327. https://doi.org/10.1109/TUFFC.2009.1313 Search in Google Scholar

Tobon-Gomez C, De Craene M, McLeod K, et al. Benchmarking framework for myocardial tracking and deformation algorithms: An open access database. Medical Image Analysis. 2013;17(6):632-648. https://doi.org/10.1016/j.media.2013.03.008 Search in Google Scholar

Zmigrodzki J, Cygan S, Wilczewska A, Kaluzynski K. Quantitative Assessment of the Effect of the Out-of-Plane Movement of the Homogenous Ellipsoidal Model of the Left Ventricle on the Deformation Measures Estimated Using 2-D Speckle Tracking—An In-Silico Study. IEEE Trans Ultrason, Ferroelect, Freq Contr. 2018;65(10):1789-1803. https://doi.org/10.1109/TUFFC.2018.2856127 Search in Google Scholar

Cygan S. Modelowanie numeryczne fantomów serca na potrzeby obrazowania odkształceń w echokardiografii (Numerical modeling of heart phantoms as a support for strain imaging in echocardiography). Akademicka Oficyna Wydawnicza EXIT; 2019. Search in Google Scholar

Cygan S, Żmigrodzki J, Leśniak-Plewińska B, Karny M, Pakieła Z, Kałużyński K. Influence of Polivinylalcohol Cryogel Material Model in FEM Simulations on Deformation of LV Phantom. Functional Imaging and Modeling of the Heart. Published online 2015:313-320. https://doi.org/10.1007/978-3-319-20309-6_36 Search in Google Scholar

Azhari H, Beyar R, Sideman S. On the Human Left Ventricular Shape. Computers and Biomedical Research. 1999;32(3):264-282. https://doi.org/10.1006/cbmr.1999.1513 Search in Google Scholar

Nesser HJ, Mor-Avi V, Gorissen W, et al. Quantification of left ventricular volumes using three-dimensional echocardiographic speckle tracking: comparison with MRI. European Heart Journal. 2009;30(13):1565-1573. https://doi.org/10.1093/eurheartj/ehp187 Search in Google Scholar

Seemann F, Pahlm U, Steding-Ehrenborg K, et al. Time-resolved tracking of the atrioventricular plane displacement in Cardiovascular Magnetic Resonance (CMR) images. BMC Med Imaging. 2017;17(1). https://doi.org/10.1186/s12880-017-0189-5 Search in Google Scholar

Carlsson M. Aspects on Cardiac Pumping. Doctoral Thesis. Lund University, Faculty of Medicine; 2007. Search in Google Scholar

Boone KG, Holder DS. Effect of skin impedance on image quality and variability in electrical impedance tomography: a model study. Med Biol Eng Comput. 1996;34(5):351-354. https://doi.org/10.1007/BF02520003 Search in Google Scholar

Jensen JA, Svendsen NB. Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers. IEEE Trans Ultrason, Ferroelect, Freq Contr. 1992;39(2):262-267. https://doi.org/10.1109/58.139123 Search in Google Scholar

Bierling M. Displacement Estimation By Hierarchical Blockmatching. Hsing TR, ed. SPIE Proceedings. Published online October 25, 1988. https://doi.org/10.1117/12.969046 Search in Google Scholar

Żmigrodzki J. Ograniczenia oceny lokalnej funkcji skurczowej lewej komory serca z wykorzystaniem dwuwymiarowych danych echograficznych i metody śledzenia markerów akustycznych - badania “in silico”. Akademicka Oficyna Wydawnicza EXIT; 2019. Search in Google Scholar

Lai WM, Rubin D, Krempl E. CHAPTER 5 - The Elastic Solid. In: Lai WM, Rubin D, Krempl E, eds. Introduction to Continuum Mechanics (Fourth Edition). Butterworth-Heinemann; 2010:201-352. https://doi.org/10.1016/B978-0-7506-8560-3.00005-0 Search in Google Scholar

Collier P, Phelan D, Klein A. A Test in Context: Myocardial Strain Measured by Speckle-Tracking Echocardiography. Journal of the American College of Cardiology. 2017;69(8):1043-1056. https://doi.org/10.1016/j.jacc.2016.12.012 Search in Google Scholar

Dice LR. Measures of the Amount of Ecologic Association Between Species. Ecology. 1945;26(3):297-302. https://doi.org/10.2307/1932409 Search in Google Scholar

eISSN:
1898-0309
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Medicine, Biomedical Engineering, Physics, Technical and Applied Physics, Medical Physics