1. bookVolumen 28 (2022): Edición 3 (September 2022)
Detalles de la revista
License
Formato
Revista
eISSN
1898-0309
Primera edición
30 Dec 2008
Calendario de la edición
4 veces al año
Idiomas
Inglés
Acceso abierto

Automatic diagnosis of severity of COVID-19 patients using an ensemble of transfer learning models with convolutional neural networks in CT images

Publicado en línea: 28 Jul 2022
Volumen & Edición: Volumen 28 (2022) - Edición 3 (September 2022)
Páginas: 117 - 126
Recibido: 23 Mar 2022
Aceptado: 04 Jul 2022
Detalles de la revista
License
Formato
Revista
eISSN
1898-0309
Primera edición
30 Dec 2008
Calendario de la edición
4 veces al año
Idiomas
Inglés

1. Global COVID-19 Tracker & Interactive Charts. Available at: https://coronavirus.1point3acres.com/en/world Search in Google Scholar

2. Bernheim A, Mei X, Huang M, Yang Y, Fayad ZA, Zhang N, et al. Chest CT findings in coronavirus disease-19 (COVID-19): relationship to duration of infection. Radiology. 2020;295(3): 200463. https://doi.org/10.1148/radiol.2020200463 Search in Google Scholar

3. Zumla A, Chan JF, Azhar EI, Hui DS, Yuen KY. Coronaviruses-drug discovery and therapeutic options. Nat Rev Drug Discov. 2016;15(5):327-347. https://doi.org/10.1038/nrd.2015.37 Search in Google Scholar

4. Cote A, Ternacle J, Pibarot P. Early prediction of the risk of severe coronavirus disease 2019: A key step in therapeutic decision making. eBioMedicine. 2020;59:102948. https://doi.org/10.1016/j.ebiom.2020.102948 Search in Google Scholar

5. World Health Organization. (2020). Clinical management of COVID-19: interim guidance, 27 May 2020. World Health Organization. Available at: https://apps.who.int/iris/handle/10665/332196 Search in Google Scholar

6. Hachim A, Kavian N, Cohen CA, Chin AW, Chu DK, Mok CK, et al. ORF8 and ORF3b antibodies are accurate serological markers of early and late SARS-CoV-2 infection. Nat Immunol. 2020;21(10):1293-1301. https://doi.org/10.1038/s41590-020-0773-7 Search in Google Scholar

7. MacMahon H, Naidich DP, Goo JM, Soo Lee K, Leung ANC, Mayo JR, et al. Guidelines for management of incidental pulmonary nodules detected on CT images: From the Fleischner Society 2017. Radiology. 2017;284(1):228-243. https://doi.org/10.1148/radiol.2017161659 Search in Google Scholar

8. Koo HJ, Lim S, Choe J, Choi SH, Sung H, Do KH. Radiographic and CT features of viral pneumonia. Radiographics. 2018;38(3):719-739. https://doi.org/10.1148/rg.2018170048 Search in Google Scholar

9. Franquet T. Imaging of pulmonary viral pneumonia. Radiology. 2011;260(1):18-39. https://doi.org/10.1148/radiol.11092149 Search in Google Scholar

10. Feng Z, Yu Q, Yao S, Luo L, Zhou W, Mao X, et al. Early prediction of disease progression in COVID-19 pneumonia patients with chest CT and clinical characteristics. Nat Commun. 2020;11(1):4968. https://doi.org/10.1038/s41467-020-18786-x Search in Google Scholar

11. Francone M, Iafrate F, Masci GM, Coco S, Cilia F, Manganaro L, et al. Chest CT score in COVID-19 patients: correlation with disease severity and short-term prognosis. Eur Radiol. 2020;30(12):6808-6817. https://doi.org/10.1007/s00330-020-07033-y Search in Google Scholar

12. Matos J, Paparo F, Mussetto I, Bacigalupo L, Veneziano A, Bernardi SP, et al. Evaluation of novel coronavirus disease (COVID-19) using quantitative lung CT and clinical data: prediction of short-term outcome. Eur Radiol Exp. 2020;4(1):39. https://doi.org/10.1186/s41747-020-00167-0 Search in Google Scholar

13. Chassagnon G, Vakalopoulou M, Battistella E, Christodoulidis S, Hoang-Thi TN, Dangeard S, et al. AI-driven quantification, staging and outcome prediction of COVID-19 pneumonia. Med Image Anal. 2021;67:101860. https://doi.org/10.1016/j.media.2020.101860 Search in Google Scholar

14. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60-88. https://doi.org/10.1016/j.media.2017.07.005 Search in Google Scholar

15. Tan C, Sun F, Kong T, Zhang W, Yang C, Liu C. A survey on deep transfer learning. arXiv:1808.01974v1 [cs.LG]. 2018. https://doi.org/10.48550/arXiv.1808.01974 Search in Google Scholar

16. Asgharnezhad H, Shamsi A, Alizadehsani R, et al. Objective evaluation of deep uncertainty predictions for COVID-19 detection. Sci Rep. 2022;12:815. https://doi.org/10.1038/s41598-022-05052-x Search in Google Scholar

17. Alizadehsani R, Sharifrazi D, N Hoseini Izadi. et al. Uncertainty-Aware Semi-Supervised Method Using Large Unlabeled and Limited Labeled COVID-19 Data. arXiv:2102.06388 [eess.IV], 2021. https://doi.org/10.48550/arXiv.2102.06388 Search in Google Scholar

18. Ayoobi N, Sharifrazi D, Alizadehsani R, et al. Time series forecasting of new cases and new deaths rate for COVID-19 using deep learning methods. Results in Physics. 2021;27:104495. https://doi.org/10.1016/j.rinp.2021.104495 Search in Google Scholar

19. Khozeimeh F, Sharifrazi D, Izadi NH, et al. Combining a convolutional neural network with autoencoders to predict the survival chance of COVID-19 patients. Sci Rep. 2021;11:15343. https://doi.org/10.1038/s41598-021-93543-8 Search in Google Scholar

20. Sharifrazi D, Alizadehsani R, Roshanzamir N, et al. Fusion of convolution neural network, support vector machine and Sobel filter for accurate detection of COVID-19 patients using X-ray images. Biomed Signal Process Control. 2021;68102622. https://doi.org/10.1016/j.bspc.2021.102622 Search in Google Scholar

21. Shoeibi A, Khodatars M, Alizadehsani R. Automated Detection and Forecasting of COVID-19 using Deep Learning Techniques: A Review. arXiv:2007.10785 [cs.LG]. 2021. https://doi.org/10.48550/arXiv.2007.10785 Search in Google Scholar

22. Wang X, Deng X, Fu Q, Zhou Q, Feng J, Ma H, et al. A weakly-supervised framework for COVID-19 classification and lesion localization from chest CT. IEEE Transact Med Imaging. 2020;39(8):2615-2625. https://doi.org/10.1109/TMI.2020.2995965 Search in Google Scholar

23. Bansal S, Singh M, Dubey RK, et al. Multi-objective Genetic Algorithm Based Deep Learning Model for Automated COVID-19 Detection Using Medical Image Data. Journal of Medical and Biological Engineering. 2021;41:678-689. https://doi.org/10.1007/s40846-021-00653-9 Search in Google Scholar

24. Almalki YE, Qayyum A, Irfan M, et al. A Novel Method for COVID-19 Diagnosis Using Artificial Intelligence in Chest X-ray Images. Healthcare (Basel). 2021;9(5):522. https://doi.org/10.3390%2Fhealthcare9050522 Search in Google Scholar

25. Irfan M, Iftikhar MA, Yasin S, et al. Role of Hybrid Deep Neural Networks (HDNNs), Computed Tomography, and Chest X-rays for the Detection of COVID-19. Int J Environ Res Public Health. 2021;18(6):3056. https://doi.org/10.3390%2Fijerph18063056 Search in Google Scholar

26. Amini N, Shalbaf A. Automatic classification of severity of COVID-19 patients using texture feature and random forest based on computed tomography images. Int J Imaging Syst Technol. 2022;32(1):102-110. https://doi.org/10.1002/ima.22679 Search in Google Scholar

27. Pan F, Ye T, Sun P, Gui S, Liang B, Li L, et al. Time course of lung changes on chest CT during recovery from 2019 novel coronavirus (COVID-19) pneumonia. Radiology 2020:295(3):715-721. https://doi.org/10.1148/radiol.2020200370 Search in Google Scholar

28. Huang L, Han R, Ai T, Yu P, Kang H, Tao Q, Xia L, et al. Serial quantitative chest CT assessment of COVID-19: deep-learning approach. Radiol Cardiothorac Imaging. 2020;2(2):e200075. https://doi.org/10.1148/ryct.2020200075 Search in Google Scholar

29. Shan F, Gao Y, Wang J, Shi W, Shi N, Han M, et al. Lung infection quantification of COVID-19 in CT images with deep learning. arXiv:2003.04655. 2020. https://doi.org/10.48550/arXiv.2003.04655 Search in Google Scholar

30. Ghosh B, Kumar N, Singh N, Sadhu AK, Ghosh N, Mitra P, et al. A quantitative lung computed tomography image feature for multi-center severity assessment of COVID-19. medRxiv 2020.07.13.20152231. https://doi.org/10.1101/2020.07.13.20152231 Search in Google Scholar

31. Shen C, Yu N, Cai S, Zhou J, Sheng J, Liu K, et al. Quantitative computed tomography analysis for stratifying the severity of coronavirus disease 2019. J Pharmaceut Analysis 2020;10(2):123-129. https://doi.org/10.1016/j.jpha.2020.03.004 Search in Google Scholar

32. Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Sys Man Cyber. 1979;9(1):62-66. https://doi.org/10.1109/TSMC.1979.4310076 Search in Google Scholar

33. Tajbakhsh N, Shin JY, Gurudu SR, Hurst RT, Kendall CB, Gotway MB et al. Convolutional neural networks for medical image analysis: full training or fine tuning?. IEEE Transact Med Imaging 2016;35(5):1299-1312. https://doi.org/10.1109/TMI.2016.2535302 Search in Google Scholar

34. Deng J, Dong W, Socher R, Li L, Li K, Fei-Fei L. ImageNet: A large-scale hierarchical image database. 2009 IEEE Conference on Computer Vision and Pattern Recognition. 2009:248-255. https://doi.org/10.1109/CVPR.2009.5206848 Search in Google Scholar

35. Khan A, Sohail A, Zahoora U, Qureshi AS, et al. A survey of the recent architectures of deep convolutional neural networks. Artif Intell Rev. 2020;53:5455-5516. https://doi.org/10.1007/s10462-020-09825-6 Search in Google Scholar

36. Tang Z, Zhao W, Xie X, Zhong Z, Shi F, Ma T, et al. Severity assessment of COVID-19 using CT image features and laboratory indices. Phys Med Biol. 2021;66(3):035015. https://doi.org/10.1088/1361-6560/abbf9e Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo