Cite

1. Matsumoto Y, Ando K, Kato TA, et al. Difference in Degree of Sub-Lethal Damage Recovery Between Clinical Proton Beams and X-Rays. Radiat Prot Dosimetry. 2019;183(1-2):93-97. https://doi.org/10.1093/rpd/ncy27010.1093/rpd/ncy27030576477 Search in Google Scholar

2. Chew MT, Jones B, Hill M, Bradley DA. Radiation, a two-edged sword: From untoward effects to fractionated radiotherapy. Radiat Phys Chem. 2021;178(108994). https://doi.org/10.1016/j.radphyschem.2020.10899410.1016/j.radphyschem.2020.108994 Search in Google Scholar

3. Zhang M, Qin N, Jia X, Zou WJ, Khan A, Yue NJ. Investigation on using high-energy proton beam for total body irradiation (TBI). J Appl Clin Med Phys. 2016;17(5):90-98. https://doi.org/10.1120/jacmp.v17i5.622310.1120/jacmp.v17i5.6223587411427685117 Search in Google Scholar

4. Abdul Rashid R, Zainal Abidin S, Khairil Anuar MA, et al. Radiosensitization effects and ROS generation by high Z metallic nanoparticles on human colon carcinoma cell (HCT116) irradiated under 150 MeV proton beam. OpenNano. 2019;4:100027. https://doi.org/10.1016/j.onano.2018.10002710.1016/j.onano.2018.100027 Search in Google Scholar

5. Alan Mitteer R, Wang Y, Shah J, et al. Proton beam radiation induces DNA damage and cell apoptosis in glioma stem cells through reactive oxygen species. Sci Rep. 2015;5(13961):1-12. https://doi.org/10.1038/srep1396110.1038/srep13961456480126354413 Search in Google Scholar

6. Moulder JE. Chemical radiosensitizers: the Journal history. Int J Radiat Biol. 2019:95(7):940-944. https://doi.org/10.1080/09553002.2019.156977910.1080/09553002.2019.156977930657352 Search in Google Scholar

7. Boateng F, Ngwa W. Delivery of nanoparticle-based radiosensitizers for radiotherapy applications. Int J Mol Sci. 2020;21(273):1-22. https://doi.org/10.3390/ijms2101027310.3390/ijms21010273698155431906108 Search in Google Scholar

8. Jiang L, Iwahashi H. The roles of radio-functional natural chemicals for the development of cancer radiation therapy. Rev Environ Health. 2019;34(1):5-12. https://doi.org/10.1515/reveh-2018-005710.1515/reveh-2018-005730511940 Search in Google Scholar

9. Kozak J, Jonak K, Maciejewski R. The function of miR-200 family in oxidative stress response evoked in cancer chemotherapy and radiotherapy. Biomed Pharmacother. 2020;125(110037):1-11. https://doi.org/10.1016/j.biopha.2020.11003710.1016/j.biopha.2020.11003732187964 Search in Google Scholar

10. Chemocare.com. Chemotherapy. Chemocare.com. Published 2016. Accessed December 23, 2016. http://chemocare.com/chemotherapy/drug-info/ Search in Google Scholar

11. Aghili M, Andalib B, Moghaddam ZK, Safaie M, Hashemi FA, Darzikolaie NM. Concurrent Chemo- Radiobrachytherapy with Cisplatin and Medium Dose Rate Intra- Cavitary Brachytherapy for Locally Advanced Uterine Cervical Cancer. Asian Pacific J Cancer Prev. 2018;19:2745-2750. https://doi.org/10.22034/APJCP.2018.19.10.2745 Search in Google Scholar

12. Rashid RA, Razak KA, Geso M, Abdullah R, Dollah N, Rahman WN. Radiobiological Characterization of the Radiosensitization Effects by Gold Nanoparticles for Megavoltage Clinical Radiotherapy Beams. Bionanoscience. 2018;8(3):713-722. https://doi.org/10.1007/s12668-018-0524-510.1007/s12668-018-0524-5 Search in Google Scholar

13. Muhammad MA, Rashid RA, Lazim RM, Dollah N, Razak KA, Rahman WN. Evaluation of radiosensitization effects by platinum nanodendrites for 6 MV photon beam radiotherapy. Radiat Phys Chem. 2018;150:40-45. https://doi.org/10.1016/j.radphyschem.2018.04.01810.1016/j.radphyschem.2018.04.018 Search in Google Scholar

14. Khairil Anuar MA, Sisin NNT, Akasaka H, et al. Effect of Nanoparticle Size on Radiosensitization Effect and ROS Generation in Human Colon Carcinoma Cells (HCT 116) After 150 MeV Proton Beam Irradiation. J Nucl Relat Technol. 2021;18(1):17-25. Search in Google Scholar

15. Sisin NNT, Abidin SZ, Yunus MA, Zin HM, Razak KA, Rahman WN. Evaluation of Bismuth Oxide Nanoparticles as Radiosensitizer for Megavoltage Radiotherapy. Int J Adv Sci Eng Inf Technol. 2019;9(4):1434-1443. https://doi.org/10.18517/ijaseit.9.4.721810.18517/ijaseit.9.4.7218 Search in Google Scholar

16. Abidin SZ, Zulkifli ZA, Razak KA, Zin H, Yunus MA, Rahman WN. PEG coated bismuth oxide nanorods induced radiosensitization on MCF-7 breast cancer cells under irradiation of megavoltage radiotherapy beams. Mater Today Proc. 2019;16:1640-1645. https://doi.org/10.1016/j.matpr.2019.06.02910.1016/j.matpr.2019.06.029 Search in Google Scholar

17. Vinardell MP, Mitjans M. Metal/Metal Oxide Nanoparticles for Cancer Therapy. In: Goncalves G, Tobias G, eds. Nanomedicine and Nanotoxicology. Springer International Publishing; 2018:341-364. https://doi.org/10.1007/978-3-319-89878-0_1010.1007/978-3-319-89878-0_10 Search in Google Scholar

18. Hadi F, Tavakkol S, Laurent S, et al. Combinatorial effects of radiofrequency hyperthermia and radiotherapy in the presence of magneto-plasmonic nanoparticles on MCF-7 breast cancer cells. J Cell Physiol. 2019;234(11): 20028-20035. https://doi.org/10.1002/jcp.2859910.1002/jcp.2859930982979 Search in Google Scholar

19. Kefayat A, Ghahremani F, Safavi A, Hajiaghababa A, Moshtaghian J. C-phycocyanin: a natural product with radiosensitizing property for enhancement of colon cancer radiation therapy efficacy through inhibition of COX-2 expression. Sci Rep. 2019;9(1):1-13. https://doi.org/10.1038/s41598-019-55605-w10.1038/s41598-019-55605-w691577931844085 Search in Google Scholar

20. Wang H, Jiang H, Corbet C, et al. Piperlongumine increases sensitivity of colorectal cancer cells to radiation: Involvement of ROS production via dual inhibition of glutathione and thioredoxin systems. Cancer Lett. 2019;450:42-52. https://doi.org/10.1016/j.canlet.2019.02.03410.1016/j.canlet.2019.02.03430790679 Search in Google Scholar

21. Rahman WN, Mat NFC, Long NAC, Rashid RA, Dollah N, Abdullah R. Radiosensitizing effects of Oroxylum indicum extract in combination with megavoltage radiotherapy beams. In: Materials Today: Proceedings. Vol 16. Elsevier Ltd.; 2019:2072-2077. https://doi.org/10.1016/j.matpr.2019.06.09410.1016/j.matpr.2019.06.094 Search in Google Scholar

22. Prasad S, Gupta SC, Tyagi AK. Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals. Cancer Lett. 2017;387:95-105. https://doi.org/10.1016/j.canlet.2016.03.04210.1016/j.canlet.2016.03.04227037062 Search in Google Scholar

23. Wang H, Zhang X. ROS reduction does not decrease the anticancer efficacy of X-Ray in two breast cancer cell lines. Oxid Med Cell Longev. 2019;2019(3782074):1-12. https://doi.org/10.1155/2019/378207410.1155/2019/3782074643774231001373 Search in Google Scholar

24. Chen Y, Li N, Wang J, et al. Enhancement of mitochondrial ROS accumulation and radiotherapeutic efficacy using a Gd-doped titania nanosensitizer. Theranostics. 2019;9(1):167-178. https://doi.org/10.7150/thno.2803310.7150/thno.28033633280230662560 Search in Google Scholar

25. Sisin NNT, Mat NFC, Abdullah R, Rahman WN. Baicalein-rich Fraction as a Potential Radiosensitizer or Radioprotective for HDR Brachytherapy: A Preliminary Study. J Nucl Relat Technol. 2020;18(1):9-16. Search in Google Scholar

26. Sisin NNT, Azam NA, Rashid RA, et al. Dose enhancement by bismuth oxide nanoparticles for HDR brachytherapy. J Phys Conf Ser. 2020;1497(012002):1-5. https://doi.org/10.1088/1742-6596/1497/1/01200210.1088/1742-6596/1497/1/012002 Search in Google Scholar

27. Sisin NNT, Razak KA, Abidin SZ, et al. Synergetic influence of bismuth oxide nanoparticles, cisplatin and baicalein-rich fraction on reactive oxygen species generation and radiosensitization effects for clinical radiotherapy beams. Int J Nanomedicine. 2020;2020(15):7805-7823.10.2147/IJN.S269214756756533116502 Search in Google Scholar

28. Zulkifli ZA, Razak KA, Rahman WNWA, Abidin SZ. Synthesis and Characterisation of Bismuth Oxide Nanoparticles using Hydrothermal Method: The Effect of Reactant Concentrations and application in radiotherapy. In: Journal of Physics: Conference Series. Vol 1082. IOP Publishing; 2018:1-7. https://doi.org/10.1088/1742-6596/1082/1/01210310.1088/1742-6596/1082/1/012103 Search in Google Scholar

29. Zulkifli ZA, Razak KA, Rahman WNWA. The effect of reaction temperature on the particle size of bismuth oxide nanoparticles synthesized via hydrothermal method. In: 3rd International Concerence on the Science and Engineering of Materials (ICoSEM 2017) AIP Conference Proceedings 1958. Vol 020007. American Institute of Physics; 2018:1-5. https://doi.org/10.1063/1.503453810.1063/1.5034538 Search in Google Scholar

30. Sisin NNT, Abdul Razak K, Zainal Abidin S, et al. Radiosensitization Effects by Bismuth Oxide Nanoparticles in Combination with Cisplatin for High Dose Rate Brachytherapy. Int J Nanomedicine. 2019;14:9941-9954. https://doi.org/10.2147/IJN.S22891910.2147/IJN.S228919692722931908451 Search in Google Scholar

31. Wahab NH, Din NAM, Lim YY, Jamil NIN, Mat NFC. Proapoptotic activities of Oroxylum indicum leave extract in HeLa cells. Asian Pac J Trop Biomed. 2019;9(8):339-345. https://doi.org/10.4103/2221-1691.26208010.4103/2221-1691.262080 Search in Google Scholar

32. Sisin NNT. Synergetic Radiosensitization Effects Of Bismuth Oxide Nanoparticles, Cisplatin And Baicalein-Rich Fraction From Oroxylum Indicum Combinations For Clinical Radiotherapy. Universiti Sains Malaysia, PhD thesis. Published online 2021. Search in Google Scholar

33. Akagi T, Higashi A, Tsugami H, Sakamoto H, Masuda Y, Hishikawa Y. Ridge filter design for proton therapy at Hyogo Ion Beam Medical Center. Phys Med Biol. 2003;48:N301-312. https://doi.org/10.1088/0031-9155/48/22/n0110.1088/0031-9155/48/22/N01 Search in Google Scholar

34. Sisin NNT, Rashid RA, Abdullah R, et al. GafchromicTM EBT3 Film Measurements of Dose Enhancement Effects by Metallic Nanoparticles for 192 Ir Brachytherapy, Proton, Photon and Electron Radiotherapy. Radiation. 2022;2:130-148. https://doi.org/10.3390/radiation201001010.3390/radiation2010010 Search in Google Scholar

35. Khan FM. Measurement of Ionizing Radiation. In: Khan’s The Physics of Radiation Therapy. 5th ed.; 2014:76. Search in Google Scholar

36. Hubbell JH, Seltzer SM. X-Ray Mass Attenuation Coefficients, NIST Standard Reference Database 126. https://doi.org/10.18434/T4D01F Search in Google Scholar

37. Narita N, Ito Y, Takabayashi T, et al. Suppression of SESN1 reduces cisplatin and hyperthermia resistance through increasing reactive oxygen species (ROS) in human maxillary cancer cells. Int J Hyperth. 2018;35(1):269-278. https://doi.org/10.1080/02656736.2018.149628210.1080/02656736.2018.149628230300027 Search in Google Scholar

38. Wang R, Li H, Sun H. Bismuth: Environmental Pollution and Health Effects. Encycl Environ Heal. 2020;1:415-423. https://doi.org/10.1016%2FB978-0-12-409548-9.11870-6 Search in Google Scholar

39. Shakibaie M, Forootanfar H, Ameri A, Adeli-Sardou M, Jafari M, Rahimi HR. Cytotoxicity of biologically synthesised bismuth nanoparticles against HT-29 cell line. IET Nanobiotechnology. 2018;12(5):653-657. https://doi.org/10.1049/iet-nbt.2017.029510.1049/iet-nbt.2017.0295867664230095428 Search in Google Scholar

40. Dinda B, Silsarma I, Dinda M, Rudrapaul P. Oroxylum indicum (L.) Kurz, an important Asian traditional medicine: From traditional uses to scientific data for its commercial exploitation. J Ethnopharmacol. 2015;161:255-278. https://doi.org/10.1016/j.jep.2014.12.02710.1016/j.jep.2014.12.02725543018 Search in Google Scholar

41. Patwardhan R. Amelioration of Ionizing Radiation Induced Cell Death in Lymphocytes by Baicalein. Homi Bhabha National Institute, PhD thesis. Published online 2015. Search in Google Scholar

42. Figueroa D, Asaduzzaman M, Young F. Real time monitoring and quantification of reactive oxygen species in breast cancer cell line MCF-7 by 2′,7′–dichlorofluorescin diacetate (DCFDA) assay. J Pharmacol Toxicol Methods. 2018;94:26-33. https://doi.org/10.1016/j.vascn.2018.03.00710.1016/j.vascn.2018.03.00729630935 Search in Google Scholar

43. Seo SJ, Jeon JK, Han SM, Kim JK. Reactive oxygen species-based measurement of the dependence of the Coulomb nanoradiator effect on proton energy and atomic Z value. Int J Radiat Biol. 2017;11:1239-1247. https://doi.org/10.1080/09553002.2017.136155610.1080/09553002.2017.136155628752783 Search in Google Scholar

44. Altundal Y, Cifter G, Detappe A, et al. New potential for enhancing concomitant chemoradiotherapy with FDA approved concentrations of cisplatin via the photoelectric effect. Phys Medica. 2015;31(1):25-30. https://doi.org/10.1016/j.ejmp.2014.11.00410.1016/j.ejmp.2014.11.004449243725492359 Search in Google Scholar

eISSN:
1898-0309
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Medicine, Biomedical Engineering, Physics, Technical and Applied Physics, Medical Physics