Acceso abierto

Comparison of three methods for reconstructing 3D motion from 2D video recordings for low cost gait analysis systems


Cite

1. van der Kruk E, Reijne MM. Accuracy of human motion capture systems for sport applications; state-of-the-art review. Eur J Sport Sci. 2018;18(6):806-819. https://doi.org/10.1080/17461391.2018.146339710.1080/17461391.2018.146339729741985 Search in Google Scholar

2. Syczewska M, Kocel K, Swiecicka A, et al. Selection of gait parameters for modified Gillette Gait Index using Hellwig Correlation Based Filter method, random forest method, and correlation methods. Biocybern Biomed Eng. 2020;40(3):1267-1276. https://doi.org/10.1016/J.BBE.2020.07.00210.1016/j.bbe.2020.07.002 Search in Google Scholar

3. Łysoń-Uklańska B, Ścibek J, Bienias K, Wit A. Analysis of Ground Reaction Forces and Kinematic Response to Gait Perturbation During Mid- to Terminal Stance Phase of the Gait Cycle. Adv Intell Syst Comput. 2020;1223:165-173. https://doi.org/10.1007/978-3-030-52180-6_1910.1007/978-3-030-52180-6_19 Search in Google Scholar

4. Łysoń-Uklańska B, Błazkiewicz M, Kwacz M, Wit A. Muscle Force Patterns in Lower Extremity Muscles for Elite Discus Throwers, Javelin Throwers and Shot-Putters - A Case Study. J Hum Kinet. 2021;78(1):5-14. https://doi.org/10.2478/hukin-2021-002610.2478/hukin-2021-0026812096034025859 Search in Google Scholar

5. Groote F De, Falisse A. Perspective on musculoskeletal modelling and predictive simulations of human movement to assess the neuromechanics of gait. Proc R Soc B. 2021;288(1946). https://doi.org/10.1098/RSPB.2020.243210.1098/rspb.2020.2432793508233653141 Search in Google Scholar

6. Tecante K, Seehaus F, Welke B, et al. Clinical gait analysis and musculoskeletal modeling. In: Magnenat-Thalmann N, Ratib O, Choi H. (eds) 3D Multiscale Physiological Human. Springer, London. 2014. https://doi.org/10.1007/978-1-4471-6275-9_710.1007/978-1-4471-6275-9_7 Search in Google Scholar

7. Colyer SL, Evans M, Cosker DP, Salo AIT. A Review of the Evolution of Vision-Based Motion Analysis and the Integration of Advanced Computer Vision Methods Towards Developing a Markerless System. Sport Med - Open. 2018;4(1):1-15. https://doi.org/10.1186/s40798-018-0139-y10.1186/s40798-018-0139-y598669229869300 Search in Google Scholar

8. Liberadzki P, Adamczyk M, Witkowski M, Sitnik R. Structured-light-based system for shape measurement of the human body in motion. Sensors (Switzerland). 2018;18(9). https://doi.org/10.3390/s1809282710.3390/s18092827616504930150558 Search in Google Scholar

9. Desmarais Y, Mottet D, Slangen P, Montesinos P. A review of 3D human pose estimation algorithms for markerless motion capture. Comput Vis Image Underst. 2021;212:103275. https://doi.org/10.1016/J.CVIU.2021.10327510.1016/j.cviu.2021.103275 Search in Google Scholar

10. Mathis A, Schneider S, Lauer J, Mathis MW. A Primer on Motion Capture with Deep Learning: Principles, Pitfalls, and Perspectives. Neuron. 2020;108(1):44-65. https://doi.org/10.1016/J.NEURON.2020.09.01710.1016/j.neuron.2020.09.01733058765 Search in Google Scholar

11. Khera P, Kumar N. Role of machine learning in gait analysis: a review. Journal of Medical Engineering & Technology. 2020;44(8):441-467. https://doi.org/10.1080/03091902.2020.182294010.1080/03091902.2020.182294033078988 Search in Google Scholar

12. Magdin M. Simple MoCap System for Home Usage. Int J Interact Multimed Artif Intell. 2017;4(4):80. https://doi.org/10.9781/ijimai.2017.441010.9781/ijimai.2017.4410 Search in Google Scholar

13. Rajkiewicz P, Łepkowska K, Cygan S. Video markers tracking methods for bike fitting. In: Romaniuk RS, ed. Proceedings of SPIE -The International Society for Optical Engineering. Vol 9662. International Society for Optics and Photonics; 2015:96621G. https://doi.org/10.1117/12.219937810.1117/12.2199378 Search in Google Scholar

14. Kolahi A, Hoviattalab M, Rezaeian T, Alizadeh M, Bostan M, Mokhtarzadeh H. Design of a marker-based human motion tracking system. Biomed Signal Process Control. 2007;2(1):59-67. https://doi.org/10.1016/J.BSPC.2007.02.00110.1016/j.bspc.2007.02.001 Search in Google Scholar

15. Chantara W, Mun J-H, Shin D-W, Ho Y-S. Object Tracking using Adaptive Template Matching. IEIE Trans Smart Process Comput. 2015;4(1):1-9. https://doi.org/10.5573/ieiespc.2015.4.1.00110.5573/IEIESPC.2015.4.1.001 Search in Google Scholar

16. Cygan S, Kaluzynski K, Lesniak B. Displacement estimation methods for elastography - a phantom study. Eng Mech. 2005;12(5):361-368. http://www.engineeringmechanics.cz/pdf/12_5_361.a.pdf. Search in Google Scholar

17. Shortest Distance Between Two Lines in N dimensions - File Exchange - MATLAB Central. https://www.mathworks.com/matlabcentral/fileexchange/29130-shortest-distance-between-two-lines-in-n-dimensions. Accessed March 21, 2020. Search in Google Scholar

18. Clark CCT, Barnes CM, Holton M, Summers HD, Stratton G. A Kinematic Analysis of Fundamental Movement Skills. Sport Sci Rev. 2016;25(3-4):261-275. https://doi.org/10.1515/ssr-2016-001410.1515/ssr-2016-0014 Search in Google Scholar

19. Moeslund TB, Granum E. A Survey of Computer Vision-Based Human Motion Capture. Comput Vis Image Underst. 2001;81(3):231-268. https://doi.org/10.1006/CVIU.2000.089710.1006/cviu.2000.0897 Search in Google Scholar

20. Thewlis D, Bishop C, Daniell N, Paul G. Next-generation low-cost motion capture systems can provide comparable spatial accuracy to high-end systems. J Appl Biomech. 2013;29(1):112-117. https://doi.org/10.1123/jab.29.1.11210.1123/jab.29.1.11222813783 Search in Google Scholar

eISSN:
1898-0309
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Medicine, Biomedical Engineering, Physics, Technical and Applied Physics, Medical Physics