Acceso abierto

Enhanced CAE system for detection of exudates and diagnosis of diabetic retinopathy stages in fundus retinal images using soft computing techniques


Cite

[1] Lee N, Laine AF, Smith RT. A hybrid segmentation approach for geographic atrophy in fundus auto-fluorescence images for diagnosis of age-related macular degeneration. In Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE, pp. 4965-4968. IEEE, 2007.10.1109/IEMBS.2007.4353455Search in Google Scholar

[2] Sopharak A, Dailey NM, Uyyanonvara B, et al. Machine learning approach to automatic exudate detection in retinal images from diabetic patients. Journal of Modern Optics. 2010;57(2):124-135.10.1080/09500340903118517Search in Google Scholar

[3] Giancardo L, Meriaudeau F, Karnowski TP, et al. Exudate-based diabetic macular edema detection in fundus images using publicly available datasets. Medical Image Analysis. 2012;16(1):216-226.10.1016/j.media.2011.07.00421865074Search in Google Scholar

[4] Geetha Ramani R, Balasubramanian L, Jacob SG. Automatic Prediction of Diabetic Retinopathy and Glaucoma through Retinal Image Analysis and Data Mining Techniques. 2012 International Conference on Machine Vision and Image Processing (MVIP), Taipei, 2012, pp. 149-152. IEEE, 201.10.1109/MVIP.2012.6428782Search in Google Scholar

[5] Wagle S, Mangai JA, Kumar VS. An Improved Medical Image Classification Model using Data Mining Techniques. GCC Conference and exhibition, November 17-20, Doha, Qatar. IEEE, 2013.10.1109/IEEEGCC.2013.6705760Search in Google Scholar

[6] Hatanaka Y, Muramatsu C, Sawada A, et al. Glaucoma Risk Assessment Based on Clinical Data and Automated Nerve Fiber Layer Defects Detection. 34th Annual International Conference of the IEEE EMBS San Diego, California USA, 28 August - 1 September, 2012.10.1109/EMBC.2012.634735223367287Search in Google Scholar

[7] Osareh A, Shadgar B, Markha R. A Computational Intelligence Based Approach for Detection of Exudates in Diabetic Retinopathy Images. IEEE Transactions on Information Technology in Biomedicine, 2009;13(4):535-545.10.1109/TITB.2008.200749319586814Search in Google Scholar

[8] Youssef D, Solouma N, El-dib A, et al. New Feature-Based Detection of Blood Vessels and Exudates in Color Fundus Images. 2010 2nd International Conference Image Processing Theory Tools and Applications (IPTA), Paris. pp. 294-299. 2010.10.1109/IPTA.2010.5586752Search in Google Scholar

[9] Zhang X, Thibault G, Decenciere E, et al. A. Exudate Detection in Color Retinal Images for Mass Screening of Diabetic Retinopathy. Medical Image Analysis. 2014;18(7):1026-1043.10.1016/j.media.2014.05.00424972380Search in Google Scholar

[10] Mansour RF, Abdelrahim EM, Al-Johani AS. Identification of Diabetic Retinal Exudates in Digital Color Images Using Support Vector Machine. Journal of Intelligent Learning Systems and Applications. 2013;5:135-142.10.4236/jilsa.2013.53015Search in Google Scholar

[11] Sreng S, Takada J, Maneerat N, et al. Automatic exudate extraction for early detection of diabetic retinopathy. Proceedings of the International Conference on Information Technology and Electrical Engineering, Oct. 7-8, IEEE Xplore Press, Yogyakarta, pp: 31-35, 2013.10.1109/ICITEED.2013.6676206Search in Google Scholar

[12] Franklin SW, Rajan SE. Diagnosis of diabetic retinopathy by employing image processing technique to detect exudates in retinal images. IET Image Processing. 2014;8(1):601-609.10.1049/iet-ipr.2013.0565Search in Google Scholar

[13] Roychowdhury S, Koozekanani DD, Parhi KK. DREAM: Diabetic retinopathy analysis using machine learning. IEEE J Biomed Health Informat. 2014;18(5):1717-172810.1109/JBHI.2013.229463525192577Search in Google Scholar

[14] Liu Q, Zou B, Chen J, et al. A location-to-segmentation strategy for automatic exudate segmentation in colour retinal fundus images. Comput Med Imag Graph. 2017;55:78-86.10.1016/j.compmedimag.2016.09.00127665058Search in Google Scholar

[15] Caramihale T, Popescu D, Ichim L. Interconnected neural networks based on voting scheme and localdetectors for retinal image analysis and diagnosis. In Proceedings of the Image Analysis and Processing Conference - ICIAP 2017, Catania, Italy, Battiato, 11–15 September 2017; Gallo G, Schettini R, Stanco F (Eds). Lecture Notes in Computer Science. 2017;10485:753-764.Search in Google Scholar

[16] Raja SS, Vasuki S. Screening diabetic retinopathy in developing countries using retinal images. Appl Med Inform. 2015;36(1):13-22.10.1155/2015/419279Search in Google Scholar

[17] Sathya J, Geetha K. Automatic segmentation of lesion from breast DCE-MR image using artificial fish swarm optimization algorithm. Pol J Med Phys Eng. 2017;23(2):29-36.10.1515/pjmpe-2017-0006Search in Google Scholar

[18] Gibbs P, Turnbull LW. Textural analysis of contrast enhanced MR images of the breast. Magn Reson Med. 2003;50(1):92-98.10.1002/mrm.10496Search in Google Scholar

[19] Agner SC, Soman S, Libfeld E, et al. Textural kinetics: a novel dynamic contrast-enhanced (DCE)-MRI feature for breast lesion classification. J Digit Imaging. 2011;24(3):446-463.10.1007/s10278-010-9298-1Search in Google Scholar

[20] Haralick RM, Shanmugam K. Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics. 1973;3(6):610-621.10.1109/TSMC.1973.4309314Search in Google Scholar

[21] Vickers AJ. Parametric versus non-parametric statistics in the analysis of randomized trials with non-normally distributed data. BMC Med Res Methodol. 2005;35(5):1-12.10.1186/1471-2288-5-35Search in Google Scholar

[22] Haury AC, Gestraud P, Vert JP. The influence of feature selection methods on accuracy, stability and interpretability of molecular signatures. PloS One. 2011;6(12):e28210.10.1371/journal.pone.0028210Search in Google Scholar

[23] Foody GM. Classification accuracy comparison: hypothesis tests and the use of confidence intervals in evaluations of difference, equivalence and non-inferiority. Remote Sensing of Environment. 2009;113(8):1658-1663.10.1016/j.rse.2009.03.014Search in Google Scholar

[24] Liu H, Li J, Wong L. A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns. Genome Inform. 2002;13:51-60.Search in Google Scholar

[25] Lisboa PJ. A review of evidence of health benefits from artificial neural networks in medical intervention. Neural Networks. 2002;15(1):11-39.10.1016/S0893-6080(01)00111-3Search in Google Scholar

[26] Levman J, Leung T, Causer P, et al. Classification of dynamic contrast-enhanced magnetic resonance breast lesions by support vector machines. IEEE Transaction on Medical Imaging. 2008;27(5):688-696.10.1109/TMI.2008.916959289101218450541Search in Google Scholar

[27] Mahendran G, Dhanasekaran R, Narmadha Devi KN. Identification of Exudates for Diabetic Retinopathy based on Morphological Process and PNN Classifier. International Conference on Communication and Signal Processing, April 3-5, 2014, India10.1109/ICCSP.2014.6950022Search in Google Scholar

eISSN:
1898-0309
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Medicine, Biomedical Engineering, Physics, Technical and Applied Physics, Medical Physics