Acceso abierto

The effect of SSD, Field size, Energy and Detector type for Relative Output Factor measurement in small photon beams as compared with Monte Carlo simulation


Cite

[1] Benedict SH, Yenice KM, Followill D, et al. Stereotactic body radiation therapy: The report of AAPM Task Group 101. Med Phys. 2010;37(8):4078-4101.10.1118/1.343808120879569Search in Google Scholar

[2] Godwin GA, Mugabe K. Characterization of a dynamic multi-leaf collimator for stereotactic radiotherapy applications. Phys Med Biol. 2012;57(14):4643-4654.10.1088/0031-9155/57/14/464322750675Search in Google Scholar

[3] Russo S, Reggiori G, Cagni E, et al. Small field output factors evaluation with a microDiamond detector over 30 Italian centers. Phys Med. 2016;32(12):1644-1650.10.1016/j.ejmp.2016.10.01727839775Search in Google Scholar

[4] Das IJ, Ding GX, Ahnesjo A. Small fields: Nonequilibrium radiation dosimetry. Med Phys. 2008;35(1): 206-215.10.1118/1.281535618293576Search in Google Scholar

[5] Cranmer-Sargison G, Weston S, Sidhu NP, Thwaites DI. Experimental small field 6 MV output ratio analysis for various diode detector and accelerator combinations. Radiother Oncol. 2011;100(3):429-435.10.1016/j.radonc.2011.09.00221945858Search in Google Scholar

[6] Gagnon JC, Theriault D, Guillot M, et al. Dosimetric performance and array assessment of plastic scintillation detectors for stereotactic radiosurgery quality assurance. Med Phys. 2012;57(14):429-436.Search in Google Scholar

[7] Scott AJ, Nahum AE, Fenwick JD. Monte Carlo modeling of small photon fields: Quantifying the impact of focal spot size on source occlusion and output factors, and exploring miniphantom design for small-field measurements. Med Phys. 2009;26(7):3132-3144.10.1118/1.315286619673212Search in Google Scholar

[8] Herrup D, Chu J, Cheung H, Pankuch M. Determination of penumbral widths from ion chamber measurements. Med Phys. 2005;32(12):3636-3640.10.1118/1.212808616475762Search in Google Scholar

[9] Nasir MKR, Amjad N, Razzaq A, Siddique MT. Measurement and Analysis of PDDs Profile and Output Factors for Small Field Sizes by cc13 and Micro-Chamber cc01. International Journal of Medical Physics, Clinical Engineering and Radiation Oncology. 2017;6(1):36-56.10.4236/ijmpcero.2017.61005Search in Google Scholar

[10] Underwood TS, Winter HC, Hill MA, Fenwick JD. Detector density and small field dosimetry: Integral versus point dose measurement schemes. Med Phys. 2013;40(8):1-16.10.1118/1.481268723927339Search in Google Scholar

[11] Sauer OA, Wilbert J. Measurement of output factors for small photon beams. Med Phys. 2007;34(6): 1983-1988.Search in Google Scholar

[12] Fox C, Simon T, Simon B, et al. Assessment of the setup dependence of detector response functions for mega-voltage linear accelerators. Med Phys. 2010;37(2):477-484.10.1118/1.3284529281483320229856Search in Google Scholar

[13] Low D, Morgan J, Dempsey J, et al. Dosimetry tools and techniques for IMRT. Med Phys. 2011;38(3):1313-1338.10.1118/1.351412021520843Search in Google Scholar

[14] Tyler MK, Liu PZ, Lee C, et al. Small field detector correction factors: effects of the flattening filter for Elekta and Varian linear accelerators. J Appl Clin Med Phys. 2016;17(3):223-235.10.1120/jacmp.v17i3.6059569094027167280Search in Google Scholar

[15] Pai S, Das IJ, Dempsey JF, et al. TG-69: Radiographic film for megavoltage beam dosimetry. Med Phys. 2007;34(6):2228-2258.10.1118/1.273677917654924Search in Google Scholar

[16] Andres C, Castilo A, Tortosa R, et al. A comprehensive study of the Gafchromic EBT2 radiochromic film. A comparison with EBT. Med Phys. 2010;37(12):6271-6278.Search in Google Scholar

[17] Mayles P, Nahum A, Rosenwald J. Handbook of Radiotherapy Physics: Theory and Practice. Taylor and Francis group, 2007.10.1201/9781420012026Search in Google Scholar

[18] ISP. Gafchromic EBT2 Self-developing film for radiotherapy dosimetry. 1361 Alps Road Wayne, New Jersey, USA, 2009.Search in Google Scholar

[19] Aland T, Kairn T, Kenny J. Evaluation of a Gafchromic EBT2 film dosimetry system for radiotherapy quality assurance. Australas Phys Eng Sci Med. 2011;34(2):251-260.10.1007/s13246-011-0072-621465275Search in Google Scholar

[20] Chetty IJ, Charland PM. Investigation of Kodak Extended Dose Range (EDR) Film for Megavoltage Photon Beam Dosimetry. Phys Med Biol. 2002;47(20):3629-3641.10.1088/0031-9155/47/20/30512433124Search in Google Scholar

[21] Shi C, Papanikolaou N, Yan Y, et al. Analysis of the Sources of Uncertainty for EDR2 Film-Based IMRT Quality Assurance. J App Clin Med Phys. 2006;37(2):1-8.10.1120/jacmp.v7i2.2230572244117533329Search in Google Scholar

[22] Lewis D, Micke A, Yu X, Chan MF. An Efficient Protocol for Radiochromic Film Dosimetry Combining Calibration and Measurement in a Single Scan. Med Phys. 2012;39(10):6339-6350.10.1118/1.475479723039670Search in Google Scholar

[23] Alfonso R, Andreo P, Capote R, et al. A New Formalism for Reference Dosimetry of Small and Nonstandard Fields. Med Phys. 2008;35(11):5179-5186.10.1118/1.300548119070252Search in Google Scholar

[24] Hu Y, Wang Y, Fogarty G, Liu G. Developing a Novel Method to Analyse Gafchromic EBT2 Films in Intensity Modulated Radiation Therapy Quality Assurance. Australas Phys Eng Sci Med. 2013;36(4):487-494.10.1007/s13246-013-0232-y24293342Search in Google Scholar

[25] Mendez I, Peterlin R, Hudej R, et al. On Multichannel Film Dosimetry with Channel-Independent Perturbations. Med Phys. 2014;41(1):11705.10.1118/1.484509524387497Search in Google Scholar

[26] Micke A, Lewis DF, Yu X. Multichannel Film Dosimetry with Nonuniformity Correction. Med Phys. 2011;38(5):2523-2534.10.1118/1.357610521776787Search in Google Scholar

[27] Kawrakow I, Mainegra-Hing E, Rogers DWO, et al. The EGSnrc code system: Monte Carlo simulation of electron and photon transport,” NRCC PIRS-701, 2013.Search in Google Scholar

[28] Rogers DWO. Fifty years of Monte Carlo simulations for medical physics. Phys Med Biol. 2006l;51(13):R287–R301.10.1088/0031-9155/51/13/R1716790908Search in Google Scholar

[29] Oderinde OM, du Plessis FCP. Technical note: A new wedge-shaped ionization chamber component module for BEAMnrc to model the integral quality monitoring system®. Radiat Phys Chem. 2017;141:346-351.10.1016/j.radphyschem.2017.08.005Search in Google Scholar

[30] Ulmer W, Kaissl W. The inverse problem of a Gaussian convolution and its application to the finite size of the measurement chambers/detectors in photon and proton dosimetry. Phys Med Biol. 2003;48(6):707-727.10.1088/0031-9155/48/6/30212699190Search in Google Scholar

[31] García-Vicente F, Delgado JM, Rodríguez C. Exact analytical solution of the convolution integral equation for a general profile fitting function and Gaussian detector kernel. Phys Med Biol. 2000;45(3):645-650.10.1088/0031-9155/45/3/30610730962Search in Google Scholar

[32] García-Vicente F, Delgado JM, Peraza C. Experimental determination of the convolution kernel for the study of the spatial response of a detector. Med Phys. 1998;25(2):202-207.10.1118/1.5981829507481Search in Google Scholar

[33] Scott AJ, Kumar S, Nahum AE, Fenwick JD. Characterizing the influence of detector density on dosimeter response in non-equilibrium small photon fields. Phys Med Biol. 2012;57(14):4461-4476.10.1088/0031-9155/57/14/446122722374Search in Google Scholar

[34] Laub WU, Wong T. The volume effect of detectors in the dosimetry of small fields used in IMRT. Med Phys. 2003;30(3):341-347.10.1118/1.154467812674234Search in Google Scholar

eISSN:
1898-0309
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Medicine, Biomedical Engineering, Physics, Technical and Applied Physics, Medical Physics