Acceso abierto

A Monte Carlo study on the radio-sensitization effect of gold nanoparticles in brachytherapy of prostate by 103Pd seeds


Cite

[1] Yang R, Wang J, Zhang H. Dosimetric Comparison of Permanent Prostate Brachytherapy Plans Utilizing Cs-131, I-125 and Pd-103 Seeds. Cancer Biother Radiopharm. 2009;24(6):701-5.10.1089/cbr.2009.064820025550Search in Google Scholar

[2] Ververs J, Anscher M, Rivard M, Todor D. A Treatment Planning Feasibility Study for Prostate LDR Brachytherapy Treatments Using the New 103-Pd CivaString Source. Comparison with Clinical Cases Using the TheraSeed Model 200 103-Pd Source. Med Phys. 2013;40(6):310.10.1118/1.4814888Search in Google Scholar

[3] Rivard MJ, Reed JL, DeWerd LA. 103Pd strings: Monte Carlo assessment of a new approach to brachytherapy source design. Med Phys 2014;41(1):011716.10.1118/1.485601524387508Search in Google Scholar

[4] Chandran PR, Thomas RT. Chapter 14 - Gold Nanoparticles in Cancer Drug Delivery. In: Ninan STG, editor. Nanotechnology Applications for Tissue Engineering.Oxford: William Andrew Publishing; 2015; 221-37.10.1016/B978-0-323-32889-0.00014-5Search in Google Scholar

[5] Gilles M, Brun E, Sicard-Roselli C. Gold nanoparticles functionalization notably decreases radiosensitization through hydroxyl radical production under ionizing radiation. Colloids Surf B: Biointerfaces 2014;123:770-7.10.1016/j.colsurfb.2014.10.02825454667Search in Google Scholar

[6] Xie WZ, Friedland WF, Li WB, et al. Simulation on the molecular radiosensitization effect of gold nanoparticles in cells irradiated by x-rays. Phys Med Biol. 2015;60(16):6195-212.10.1088/0031-9155/60/16/619526226203Search in Google Scholar

[7] Yao XF, Huang CF, Chen XF, et al. Chemical Radiosensitivity of DNA Induced by Gold Nanoparticles. J Biomed Nanotechnol. 2015;11(3):478-85.10.1166/jbn.2015.192226307830Search in Google Scholar

[8] Alexis F, Rhee JW, Richie JP, et al. New frontiers in nanotechnology for cancer treatment. Urologic Oncology: Seminars and Original Investigations. 2008;26(1):74-85.10.1016/j.urolonc.2007.03.01718190835Search in Google Scholar

[9] Gao Z, Zhang L, Sun Y. Nanotechnology applied to overcome tumor drug resistance. J Control Release 2012;162(1):45-55.10.1016/j.jconrel.2012.05.05122698943Search in Google Scholar

[10] Geso M. Nanoparticle augmented radiation treatment decreases cancer cell proliferation. Nanomedicine: Nanotechnology, Biology and Medicine 2013;9(2):302-3.10.1016/j.nano.2012.11.00323220219Search in Google Scholar

[11] Joh DY, Kao GD, Murty S, et al. Theranostic Gold Nanoparticles Modified for Durable Systemic Circulation Effectively and Safely Enhance the Radiation Therapy of Human Sarcoma Cells and Tumors. Transl Oncol. 2013;6(6):722-732.10.1593/tlo.13433389070724466375Search in Google Scholar

[12] Nazir S, Hussain T, Ayub A, et al. Nanomaterials in combating cancer: Therapeutic applications and developments. Nanomedicine: Nanotechnology, Biology and Medicine. 2014;10(1):19-34.10.1016/j.nano.2013.07.00123871761Search in Google Scholar

[13] Bertrand N, Wu J, Xu X, et al. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Revi. 2014;6666:2-25.10.1016/j.addr.2013.11.009421925424270007Search in Google Scholar

[14] Brede C, Labhasetwar V. Applications of Nanoparticles in the Detection and Treatment of Kidney Diseases. Adv Chronic Kidney Dis. 2013;20(6):454-65.10.1053/j.ackd.2013.07.006382425924206598Search in Google Scholar

[15] Chatterjee DK, Fong LS, Zhang Y. Nanoparticles in photodynamic therapy: An emerging paradigm. Adv Drug Deliv Rev 2008;60(15):1627-37.10.1016/j.addr.2008.08.00318930086Search in Google Scholar

[16] Etame AB, Diaz RJ, O’Reilly MA, et al. Enhanced delivery of gold nanoparticles with therapeutic potential into the brain using MRI-guided focused ultrasound. Nanomedicine: Nanotechnology, Biology and Medicine. 2012;8(7):1133-42.10.1016/j.nano.2012.02.003410153722349099Search in Google Scholar

[17] Feng G, Kong B, Xing J, Chen J. Enhancing multimodality functional and molecular imaging using glucose-coated gold nanoparticles. Clin Radiol. 2014;69(11):1105-11.10.1016/j.crad.2014.05.11225023059Search in Google Scholar

[18] Gaca S, Reichert S, Multhoff G, et al. Targeting by cmHsp70.1-antibody coated and survivin miRNA plasmid loaded nanoparticles to radiosensitize glioblastoma cells. J Control Rel. 2013;28;172(1):201-6.10.1016/j.jconrel.2013.08.02024008150Search in Google Scholar

[19] Hong H, Chen F, Zhang Y, Cai W. New radiotracers for imaging of vascular targets in angiogenesis-related diseases. Adv Drug Deliv Rev. 2014;76:2-20.10.1016/j.addr.2014.07.011416974425086372Search in Google Scholar

[20] Lin Y, McMahon SJ, Scarpelli M, et al. Comparing gold nano-particle enhanced radiotherapy with protons, megavoltage photons and kilovoltage photons: a Monte Carlo simulation. Phys Med Biol. 2014;59(24):7675-89.10.1088/0031-9155/59/24/767525415297Search in Google Scholar

[21] Asadi S, Vaez-Zadeh M, Vahidian M, et al. Ocular brachytherapy dosimetry for 103Pd and 125I in the presence of gold nanoparticles: a Monte Carlo study. J Appl Clin Med Phys. 2016;17(3):90-99.10.1120/jacmp.v17i3.5945569093327167265Search in Google Scholar

[22] Khosravi H, Hashemi B, Mahdavi SR, Hejazi P. Effect of Gold Nanoparticles on Prostate Dose Distribution under Ir-192 Internal and 18 MV External Radiotherapy Procedures Using Gel Dosimetry and Monte Carlo Method. J Biomed Phys Eng. 2015;5(1):3-14.Search in Google Scholar

[23] Sinha N, Cifter G, Sajo E, et al. Brachytherapy application with in situ dose painting administered by gold nanoparticle eluters. Int J Radiat Oncol Biol Phys. 2015;91(2):385-92.10.1016/j.ijrobp.2014.10.001431271525482302Search in Google Scholar

[24] Reed JL, Rivard MJ, Micka JA, et al. Experimental and Monte Carlo dosimetric characterization of a 1 cm 103Pd brachytherapy source. Brachytherapy. 2014;13(6):657-67.10.1016/j.brachy.2014.04.00124880585Search in Google Scholar

[25] P Saidi, M Sadeghi, M Enferadi, G Aslani. Investigation of palladium-103 production and IR07-103Pd brachytherapy seed preparation. Ann Nucl Energy. 2011;38(1):2168-73.10.1016/j.anucene.2011.06.018Search in Google Scholar

[26] Butler WM, Merrick GS. Focal prostate brachytherapy with 103Pd seeds. Phys Med. 2016;32(3):459-64.10.1016/j.ejmp.2016.03.01227053451Search in Google Scholar

[27] Li ZY, Gao HB, Deng XS, et al. Preparation of 103Pd brachytherapy seeds by electroless plating of 103Pd onto carbon bars. Appl Radiat Isot. 2015;103:128-30.10.1016/j.apradiso.2015.05.02026092353Search in Google Scholar

[28] Saidi P, Sadeghi M, Shirazi A, Tenreiro C. Dosimetric parameters of the new design 103Pd brachytherapy source based on Monte Carlo study. Phys Med. 2012;28(1):13-8.10.1016/j.ejmp.2010.12.00521251862Search in Google Scholar

[29] National Laboratory Report No. BNL.NCS-17541. Cross section Evaluation Working Group. ENDF/B-VI summary documentation (ENDF-201). December 2000: National Nuclear Data Center; 2000.Search in Google Scholar

[30] Rivard MJ, Coursey BM, DeWerd LA, et al. Update of AAPM task group No. 43 report: a revised AAPM protocol for brachytherapy dose calculations. Med Phys. 2004;31(3):633-74.10.1118/1.164604015070264Search in Google Scholar

[31] Raisali G, Ghonchehnazi MG, Shokrani P, Sadeghi M. Monte Carlo and experimental characterization of the first AMIRS 103Pd brachytherapy source. Appl Radiat Isot 2008;66(12):1856-60.10.1016/j.apradiso.2008.06.00718657981Search in Google Scholar

[32] Kim YJ, Park JH, Yun IH, Kim YS. A prospective comparison of acute intestinal toxicity following whole pelvic versus small field intensity-modulated radiotherapy for prostate cancer. Onco Targets Ther. 2016;9:1319-25.10.2147/OTT.S96646479050727022287Search in Google Scholar

[33] Xie WZ, Friedland WF, Li WB, et al. Simulation on the molecular radiosensitization effect of gold nanoparticles in cells irradiated by x-rays. Phys Med Biol 2015; 21;60(16):6195-212.10.1088/0031-9155/60/16/619526226203Search in Google Scholar

[34] Yang CJ, Chithrani DB. Nuclear Targeting of Gold Nanoparticles for Improved Therapeutics. Curr Top Med Chem. 2016;16(3):271-80.10.2174/1568026615666150701115012Search in Google Scholar

[35] Brun E, Sanche L, Sicard-Roselli C. Parameters governing gold nanoparticle X-ray radiosensitization of DNA in solution. Colloids Surf B Biointerfaces. 2009;7(1)2:128-34.10.1016/j.colsurfb.2009.03.02519414242Search in Google Scholar

[36] Brun E, Duchambon P, Blouquit Y, et al. Gold nanoparticles enhance the X-ray-induced degradation of human centrin 2 protein. Radiat Phys Chem. 2009;78(3):177-83.10.1016/j.radphyschem.2008.11.003Search in Google Scholar

[37] Feng G, Kong B, Xing J, Chen J. Enhancing multimodality functional and molecular imaging using glucose-coated gold nanoparticles. Clin Radiol. 2014;69(11):1105-11.10.1016/j.crad.2014.05.11225023059Search in Google Scholar

[38] Ghorbani M, Mehrpouyan M, Davenport D, Ahmadi Moghaddas T. Effect of photon energy spectrum on dosimetric parameters of brachytherapy sources. Radiol Oncol. 2016;50(2):238-46.10.1515/raon-2016-0019485296027247558Search in Google Scholar

[39] Reynoso FJ, Manohar N, Krishnan S, Cho SH. Design of an Yb-169 source optimized for gold nanoparticle-aided radiation therapy. Med Phys. 2014;41(10):101709.10.1118/1.489599125281948Search in Google Scholar

[40] Sinha N, Cifter G, Sajo E, et al. Brachytherapy application with in situ dose painting administered by gold nanoparticle eluters. Int J Radiat Oncol Biol Phys. 2015;91(2):385-92.10.1016/j.ijrobp.2014.10.001431271525482302Search in Google Scholar

eISSN:
1898-0309
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Medicine, Biomedical Engineering, Physics, Technical and Applied Physics, Medical Physics