Acceso abierto

Study of the volume reduction impact on secondary photons emergent from flattening filter for high radiotherapy quality


Cite

[1] Bencheikh M, Maghnouj A, Tajmouati J. Photon beam softening coefficients evaluation for a 6 MV photon beam for an aluminum slab: Monte Carlo study using BEAMnrc code, DOSXYZnrc code and BEAMDP code. Moscow Univ Phys. 2017;72(3): 263-270.10.3103/S0027134917030043Search in Google Scholar

[2] Bencheikh M, Maghnouj A, Tajmouati J. Photon Beam Softening Coefficient Determination with Slab Thickness in Small Filed Size: Monte Carlo Study. Phys Part Nuclei Lett (PEPAN). 2017;14(6):963-970.10.1134/S1547477117060085Search in Google Scholar

[3] Bencheikh M, Maghnouj A, Tajmouati J. Energetic properties’ investigation of removing flattening filter at phantom surface: Monte Carlo study using BEAMnrc code, DOSXYZnrc code and BEAMDP code. Phys Part Nuclei Lett (PEPAN). 2017;14(6):953-962.10.1134/S1547477117060073Search in Google Scholar

[4] Bencheikh M, Maghnouj A, Tajmouati J. Dosimetry Investigation and Evaluation for Removing Flattening Filter Configuration of Linac: Monte Carlo Study. Moscow Univ Phys. 2017;72(6):640-646.10.3103/S0027134918660025Search in Google Scholar

[5] Bencheikh M, Maghnouj A, Tajmouati J. Relative Attenuation and Beam Softening Study with Flattening Filter Volume Reduction: Monte Carlo Study. Moscow Univ Phys. 2017;72(6):647-652.10.3103/S0027134918660037Search in Google Scholar

[6] Bencheikh M, Maghnouj A, Tajmouati J. (2017), Study of Possibility to Reduce Flattening Filter Volume for Increasing Energetic Photons for High Radiotherapy Efficiency. Moscow Univ Phys. 2017;72(6):653-657.10.3103/S0027134918660049Search in Google Scholar

[7] Bencheikh M, Maghnouj A, Tajmouati J. Study of photon beam dosimetry quality for removing flattening filter linac configuration. Ann Univ Craiova Physics AUC. 2017;27:50-60.Search in Google Scholar

[8] Klein EE, Hanley J, Bayouth J, et al. AAPM Task Group 142 Report: Quality assurance of medical accelerators. Medical Physics. 2009;36(9):4197-4212.10.1118/1.319039219810494Search in Google Scholar

[9] Nath R, Biggs PJ, Bova FJ, et al. AAPM code of practice for radiotherapy accelerators: report of AAPM Radiation Therapy Task Group No. 45. Med Phys. 1994;21(7):1093-1121.10.1118/1.5973987968843Search in Google Scholar

[10] Didi A, Dadouch A, Bencheikh M, Jai O. Monte Carlo simulation of thermal neutron flux of americium–beryllium source used in neutron activation analysis. Moscow Univ Phys. 2017;72(5):460-464.10.3103/S0027134917050022Search in Google Scholar

[11] Bencheikh M, Maghnouj A, Tajmouati J, et al. Validation of Monte Carlo simulation of linear accelerator using BEAMnrc code and DOSXYZnrc code. Phys Part Nuclei Lett (PEPAN). 2017;14(5):780-787,10.1134/S154747711705003XSearch in Google Scholar

[12] Rogers DWO, Walters B, Kawrakow I. BEAMnrc Users Manual. NRCC Report, Ottawa, 2013. pp 12-254.Search in Google Scholar

[13] Rogers DWO, Kawrakow I, Seuntjens JP, et al. NRC User Codes for EGSnrc. NRCC Report, Ottawa, 2013. pp 6-83.Search in Google Scholar

[14] Ma CM, Rogers DWO. BEAMDP Users Manual. National Research Council of Canada, NRCC Report, Ottawa. 2013. pp 3-24.Search in Google Scholar

[15] Low DA, Dempsey JF. Evaluation of the gamma dose distribution comparison method. Med Phys. 2003;30(9):2455-2464.10.1118/1.159871114528967Search in Google Scholar

[16] IAEA Technical Reports Series No.430. Commissioning and Quality Assurance of Computerized Planning Systems for Radiation Treatment of Cancer. International Atomic Energy Agency, Vienna. 2004.Search in Google Scholar

[17] IAEA-TECDOC-1540. Specification and Acceptance Testing of Radiotherapy Treatment Planning Systems. International Atomic Energy Agency, Vienna. 2007Search in Google Scholar

eISSN:
1898-0309
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Medicine, Biomedical Engineering, Physics, Technical and Applied Physics, Medical Physics