Acceso abierto

Coupled action of ozone and UV radiation towards obtaining adipic acid from cyclohexane/one


Cite

Bart, J.C.J. & Cavallaro, S. (2015). Transiting from adipic acid to bioadipic acid. 1, Petroleum-based processes. Ind. Eng. Chem. Res. 54(1), 1–46. DOI: 10.1021/ie5020734.Search in Google Scholar

Bart, J.C.J. & Cavallaro, S. (2015). Transiting from adipic acid to bioadipic acid. Part II. Biosynthetic pathways. Ind. Eng. Chem. Res. 54(2), 567–576. DOI: 10.1021/ie502074d.Search in Google Scholar

Rios, J., Lebeau, J., Yang, T., Li, S. & Lynch, M.D. (2021). A critical review on the progress and challenges to a more sustainable, cost competitive synthesis of adipic acid. Green Chem. 23, 3172–3190. 10.1039/d1gc00638j.Search in Google Scholar

Abutaleb, A. & Ali, M.A. (2021). A comprehensive and updated review of studies on the oxidation of cyclohexane to produce ketone-alcohol (KA) oil. Rev. Chem. Eng. 38(7), 769–797. DOI: 10.1515/revce-2020-0059.Search in Google Scholar

Wang, T., She, Y., Fu, H. & Li, H. (2016). Selective cyclohexane oxidation catalyzed by manganese porphyrins and co-catalysts. Catal. Today 264, 185–190. 10.1016/j.cattod.2015.07.034.Search in Google Scholar

Shen, H.M., Wang, X., Ning, L., Guo, A.B., Deng, J.H. & She, Y-B. (2021). Efficient oxidation of cycloalkanes with simultaneously increased conversion and selectivity using O2 catalyzed by metalloporphyrins and boosted by Zn(AcO)2: A practical strategy to inhibit the formation of aliphatic diacids. Appl. Catal. A–Gen. 609, 117904. 10.1016/j.apcata.2020.117904.Search in Google Scholar

Iwahama, T., Syojyo, K., Sakaguchi, S. & Ishii, Y. (1998). Direct conversion of cyclohexane into adipic acid with molecular oxygen catalyzed by N-hydroxyphthalimide combined with Mn(acac)2 and Co(OAc)2. Org. Proc. Res. Dev. 2(4), 255–260. DOI: 10.1021/op980016y.Search in Google Scholar

Gunchenko, P.A., Li, J., Liu, B., Chen, H., Pashenko, A.E., Bakhonsky, V.V., Zhuk, T.S. & Fokin, A.A. (2018). Aerobic oxidations with N-hydroxyphthalimide in trifluoroacetic acid. Mol. Catal. 447, 72–9. DOI: 10.1016/j.mcat.2017.12.017.Search in Google Scholar

Liang, F., Zhong, W., Xiang, L., Mao, L., Xu, Q., Kirk, S.R. & Yin, D. (2019). Synergistic hydrogen atom transfer with the active role of solvent: Preferred one-step aerobic oxidation of cyclohexane to adipic acid by N-hydroxyphthalimide. J. Catal. 378, 256–69. DOI: 10.1016/j.jcat.2019.08.042.Search in Google Scholar

Lisicki, D. & Orlińska, B. (2020). Oxidation of cycloalkanes catalysed by N-hydroxyimides in supercritical carbon dioxide. Chem. Pap. 74(2), 711–6. DOI: 10.1007/s11696-019-00937-0.Search in Google Scholar

Talik, G., Osial, A., Grymel, M. & Orlińska, B. (2020). N-Hydroxyphthalimide on a polystyrene support coated with Co(II)-containing ionic liquid as a new catalytic system for solvent-free ethylbenzene oxidation. Catalysts 10(12), 1367. DOI: 10.3390/catal10121367.Search in Google Scholar

Dobras, G., Kasperczyk, K., Jurczyk, S. & Orlińska, B. (2020). N-hydroxyphthalimide supported on silica coated with ionic liquids containing CoCl2 (SCILLs) as new catalytic system for solvent-free ethylbenzene oxidation. Catalysts 10(2), 252. DOI: 10.3390/catal10020252.Search in Google Scholar

Talik, G. & Orlińska, B. (2021). New evidence for the key role of hydrogen bonding between N-hydroxyphthalimide and halide ionic liquids in hydrocarbons oxidation. Chem. Cat. Chem. 13(21), 4578–90. DOI: 10.1002/cctc.202100990.Search in Google Scholar

Dobras, G., Sitko, M., Petroselli, M., Caruso, M., Cametti, M., Punta, C. & Orlińska, B. (2020). Solvent-free aerobic oxidation of ethylbenzene promoted by NHPI/Co(II) catalytic system: The key role of ionic liquids. Chem. Cat. Chem 12(1), 259–266. DOI: 10.1002/cctc.201901737.Search in Google Scholar

Bhanja, P., Ghosh, K., Islam, S.S., Patra, A.K., Islam, S.M. & Bhaumik, A. (2016). New hybrid iron phosphonate material as an efficient catalyst for the synthesis of adipic acid in air and water. ACS Sustainable Chem. Eng. 4(12), 7147–7157. DOI: 10.1021/acssuschemeng.6b02023.Search in Google Scholar

Nale, S.D., Rathod, P.V. & Jadhav, V.H. (2017). Manganese incorporated on glucose as an efficient catalyst for the synthesis of adipic acid using molecular O2 in aqueous medium. Appl. Catal. A–Gen. 546, 122–125. DOI: 10.1016/j.apcata.2017.08.008.Search in Google Scholar

Gao, X., Zhou, Y., Gu, J., Li, L. & Li, Y. (2019). Facile synthesis of hierarchical manganese-containing TS-1 and its application on the oxidation of cyclohexanone with molecular oxygen. Micropor. Mesopor. Mat. 275, 263–269. DOI: 10.1016/j. micromeso.2018.08.037.Search in Google Scholar

Zou, G., Zhong, W., Mao, L., Xu, Q., Xiao, J., Yin, D., Xiao, Z., Kirk, S.R. & Shu T. (2015). A non-nitric acid method of adipic acid synthesis: organic solvent- and promoter-free oxidation of cyclohexanone with oxygen over hollow-structured Mn/TS-1 catalysts. Green Chem. 17, 1884–1892. DOI: 10.1039/c4gc02333a.Search in Google Scholar

Lisicki, D. & Orlińska, B. (2018). Oxidation of cyclic ketones to dicarboxylic acids. Pol. J. Chem. Technol. 20(4), 102–107. DOI: 10.2478/pjct-2018-0061.Search in Google Scholar

Lisicki, D. & Orlińska, B. (2019). Patent PL 239347.Search in Google Scholar

Liu, G., Chen, M., Jin, X., Song, C., He, F. & Huang, Q. (2021). Combination of H3PW12O40-TiO2 catalysts for photo-thermal oxidation of cyclohexene to adipic acid by 30% H2O2. J. Environ. Chem. Eng. 9(4), 105422. DOI: 10.1016/j. jece.2021.105422.Search in Google Scholar

Jin, P., Wei, H., Zhou, L., Wei, D., Wen, Y., Zhao, B., Wang, X. & Li, B. (2021). Anderson-type polyoxometalate as excellent catalyst for green synthesis of adipic acid with hydrogen peroxide. Mol. Catal. 510, 111705. DOI: 10.1016/j. mcat.2021.111705.Search in Google Scholar

Soares, J.C.S., Gonçalves, A.H.A., Zotin, F.M.Z., de Araújo, L.R.R. & Gaspar, A.B. (2021). Influence of reactional parameters in the adipic acid synthesis from cyclohexene using heterogeneous polyoxometalates. Catal. Today 381, 143–53. DOI: 10.1016/j.cattod.2020.07.052.Search in Google Scholar

Peckh, K., Lisicki, D., Pabich, E. & Orlińska, B. (2022). Oxidation of 1,2-cyclohexanediol as a step for adipic acid synthesis. J. Ind. Eng. Chem. 110, 131–6. DOI: 10.1016/j. jiec.2022.02.053.Search in Google Scholar

Hwang, K.C. & Sagadevan, A. (2014). One-pot room-temperature conversion of cyclohexane to adipic acid by ozone and UV light. Science, 346, 1495–98. DOI: 10.1126/science.1259684.Search in Google Scholar

eISSN:
1899-4741
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering