Acceso abierto

Phytochemical composition and antioxidant activity of leaves extracts of Coleus forskohlii L. collected from Al-Leith Area, Saudi Arabia


Cite

Basoudan, N., Taie, H.A.A., Abu-Gabal, N.S., Al-Ghamdi S.N. & Shalaby N.M.M. (2019). Phytochemical study and antioxidant activity of some flowering plants growing wild in Al-Bahah in Saudi Arabia. Res. J. Pharm. Biol. Chem. Sci. 10(3), 498–514. DOI: 10.21474/IJAR01/10660. Search in Google Scholar

Soliman, M., Qari, S.H., Abu-Elsaoud, A., El-Esawi, M., Alhaithloul, H. & Elkelish, A. (2020). Rapid Green Synthesis of Silver Nanoparticles from Blue Gum Augment Growth and Performance of Maize, Fenugreek, and Onion by Modulating Plants Cellular Antioxidant Machinery and Genes Expression. Acta Physiol. Plant. 42, 148. DOI: 10.1007/s11738-020-03131-y. Search in Google Scholar

Singh, A.K., Arun, P., Shukla, J., Kumar, A., Nandi, M.K., Abduljaleel, Z., Al- Ghamdi, Saeed S. Alzahrani, Abdullah, R., Shahzad & Naiyer Shahzad, N. (2023). A Review on Traditional Anti-ulcer Medicinal Plants. Lett Drug Des Discoy. 20(4), 408–419. DOI: 10.2174/1570180819666220909090512. Search in Google Scholar

Khalid, S., Almalki, F. A., Hadda, T.B., Bader, A., Abu-Izneid, T., Berredjem, M., Elsharkawy, E. & Alqahtani, A.M. (2021). Medicinal applications of cannabinoids extracted from Cannabis sativa (L.): a new route in the fight against COVID-19?. Current pharmaceutical design, 27(13), 1564–1578. DOI: 10.2174/1381612826666201202125807. Search in Google Scholar

Badhepuri, M.K., Manokari, M., Raj, M.C., Jogam, P., Dey, A., Faisal, M. & Shekhawat, M.S. (2023). Meta-Topolin enhanced direct shoot organogenesis and regeneration from leaf explants of Coleus forskohlii (Willd.) Briq. Industrial Crops and Products, 197, 116584. DOI: 10.1016/j.indcrop.2023.116584. Search in Google Scholar

Kulkarni, C., Sharma, S., Porwal, K., Rajput, S., Sadhukhan, S., Singh, V., Akanksha S., Sanjana, B., Saroj, K., Aboli, G., Alka, R.P., Suriya P.S., Koneni V.S., Navin, K., Lal, H. & Naibedya, C. (2023). A standardized extract of Coleus forskohlii root protects rats from ovariectomy-induced loss of bone mass and strength, and impaired bone material by osteogenic and anti-resorptive mechanisms. Frontiers in Endocrinology 14. DOI: 10.3389/fendo.2023.1130003. Search in Google Scholar

Lunz, K. & Stappen, I. (2021). Back to the roots – an overview of the chemical composition and bioactivity of selected root-essential oils. Molecules, 26(11), 3155. DOI: 10.3390/molecules26113155. Search in Google Scholar

Sofowora, A., Ogunbodede, E. & Onayade, A. (2013). The role and place of medicinal plants in the strategies for disease prevention. AJTCAM, 10(5), 210–229. DOI: 10.4314/ajtcam.v10i5.2. Search in Google Scholar

Peltzer, D., Dreyer, E., & Polle, A. (2002). Differential temperature dependencies of antioxidative enzymes in two contrasting species: Fagus sylvatica and Coleus blumei. Plant Physiology and Biochemistry, 40(2), 141–150. DOI: 10.1016/S0981-9428(01)01352-3. Search in Google Scholar

Romero-Martínez, B.S., Sommer, B., Solís-Chagoyán, H., Calixto, E., Aquino-Gálvez, A., Jaimez, R., Juan, C., Gomez-V., Georgina, G., Edgar, F. & Luis, M. (2023). Estrogenic Modulation of Ionic Channels, Pumps and Exchangers in Airway Smooth Muscle. Int. J. Mol. Sci. 24(9), 7879. DOI: 10.3390/ijms24097879. Search in Google Scholar

Balasubramanian, V., Suresh, J., Srinivasan, R., Prabhu, M., Manikandan, E. & Nandha, V.G. (2020). Evaluation of soil characteristics and yield variation of coleus (Coleus forskohlii) in different agro climatic zones of Tamil Nadu. Int. J. Conserv. Sci. 8(4), 2841–5. DOI: 10.22271/chemi.2020.v8.i4ah.10076. Search in Google Scholar

Abd-Allah, H., AbdAlhady, M.M., Abdelall, M.N., Mohamedy, S.N., Alharbi, W.D. & Bahathiq, A.O. (2017). Hormonal and immunological responses to Coleus forskohlii treatment in female rats with experimentally polycystic ovaries syndrome. Zagazig Veter. J. 45(1), 74–81. DOI: 10.21608/zvjz.2017.7689. Search in Google Scholar

Pateraki, I., Andersen-Ranberg, J., Jensen, N.B., Wubshet, S.G., Heskes, A.M., Forman, V., Björn, H., Britta, H., Mohammed, S., Carl, E., Dan, S., Jørgen H., Birger, L. & Björn, H. (2017). Total biosynthesis of the cyclic AMP booster forskolin from Coleus forskohlii. Elife, 6. DOI: 10.7554/eLife.23001. Search in Google Scholar

Krishna, G., Sairam, Reddy, P., Anoop, Nair, N., Ramteke, P.W. & Bhattacharya, P. (2010). In vitro direct shoot regeneration from proximal, middle, and distal. Search in Google Scholar

segment of Coleus forskohlii leaf explants. Physiol. Mol. Biol. Plants, 16, 195–200. DOI: 10.1007/s12298-010-0021-y. Search in Google Scholar

Kotia, A., Adhikari, B.S., Rawat, G.S. & Pasha, M. (2007), Status and Distribution of Coleus barbatus Benth. In Tehri Garhwal District, Uttarakhand. J. Biodivers Endanger Species, 2, 127. DOI: 10.4172/2332-2543.1000127. Search in Google Scholar

Kharwar, R.N., Sharma, V.K., Mishra, A., Kumar, J., Singh, D.K., Verma, S.K., Surendra, K., Anuj, K., Nutan, K., Bharadwaj, R. & Souvik, K. (2020). Harnessing the phytotherapeutic treasure troves of the ancient medicinal plant Azadirachta indica (Neem) and associated endophytic microorganisms. Planta Medica, 86(13/14), 906–940. DOI: 10.1055/a-1107-9370. Search in Google Scholar

Srivastava, S., Misra, A., Mishra, P., Shukla, P., Kumar, M., Sundaresan, V., Kuldeep, S., Pawan, K. & Ajay, K. (2017). Molecular and chemotypic variability of forskolin in Coleus forskohlii Briq., a high value industrial crop collected from Western Himalayas (India). Rsc. Advances, 7(15), 8843–8851. DOI: 10.1039/C6RA26190F. Search in Google Scholar

Sivakumar, P., Bavithra, V.S., Ashokkumar, K., Deepadharsini, R., Selvaraj, K.V. & Gopal, M.R. (2021). Comprehensive review on phytochemistry and in vitro biotechnology of Coleus forskohlii. J. pharmacogn. phytochem, 10(1), 448–453. DOI:10.22271/phyto.2021.v10. i1g.13346. Search in Google Scholar

Godard, M.P., Johnson, B.A. & Richmond, S.R. (2005). Body composition and hormonal adaptations associated with forskolin consumption in overweight and obese men. Obesity research, 13(8), 1335–1343. DOI: 10.1038/oby.2005.162. Search in Google Scholar

Luo, C., Zou, L., Sun, H., Peng, J., Gao, C., Bao, L., Renpeng, J., Yue, J. & Shuangyong S. (2020). A review of the anti-inflammatory effects of rosmarinic acid on inflammatory diseases. Frontiers in pharmacology, 11, 153. DOI: 10.3389/fphar.2020.00153. Search in Google Scholar

Al-Ghamdi, A.Y., Fadlelmula, A.A., Abdalla, M.O. & Zabin, S.A. (2021). Phytochemical Screening, Chemical Composition, Antimicrobial Activity and in Silico Investigation of the Essential Oil of Coleus forskohlii L. Collected from the Southwestern Region of Saudi Arabia. J. Essent. Oil-Bear. Plants, 24(1), 120–133. DOI: 10.1080/0972060X.2021.1901613. Search in Google Scholar

Kanyal, J., Prakash, O., Kumar, R., Rawat, D.S., Srivastava, R.M., Singh, R.P. & Pant, A.K. (2021). Study on comparative chemical composition and biological activities in the essential oils from different parts of Coleus barbatus (Andrews) Bent. ex G. Don. J. Essent. Oil-Bear. Plants, 24(4), 808–825. DOI: 10.1080/0972060X.2021.1958701. Search in Google Scholar

Bantan, R.A., Khawfany, AA., Basaham, A.S., & Gheith, A.M. (2020). Geochemical Characterization of Al-Lith Coastal Sediments, Red Sea, Saudi Arabia. Arab. J. Sci. Eng. 45, 291–306. DOI: 10.1007/s13369-019-04161-6. Search in Google Scholar

Adetunji, L.R., Adekunle, A., Orsat, V. & Raghavan, V. (2017). Advances in the pectin production process using novel extraction techniques: A review. Food Hydrocolloids, 62, 239–250. DOI: 10.1016/j.foodhyd.2016.08.015. Search in Google Scholar

Morsy, N. (2014). Phytochemical analysis of biologically active constituents of medicinal plants. Main Group Chemistry, 13(1), 7–21. DOI 10.3233/MGC-130117. Search in Google Scholar

Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D.G., & Lightfoot, D.A. (2017). Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants, 6(4), 42. DOI: 10.3390/plants6040042. Search in Google Scholar

Nortjie, E., Basitere, M., Moyo, D., & Nyamukamba, P. (2022). Extraction methods, quantitative and qualitative phytochemical screening of medicinal plants for antimicrobial textiles: a review. Plants, 11(15), 2011. DOI: 10.3390/plants11152011. Search in Google Scholar

Vaou, N., Stavropoulou, E., Voidarou, C., Tsigalou, C. & Bezirtzoglou, E. (2021). Towards advances in medicinal plant antimicrobial activity: A review study on challenges and future perspectives. Microorganisms, 9(10), 2041. DOI: 10.3390/microorganisms9102041. Search in Google Scholar

Oboh, G. & Akindahunsi, A.A. (2004). Change in the ascorbic acid, total phenol and antioxidant activity of sun-dried commonly consumed green leafy vegetables in Nigeria. Nutrition and Health, 18(1), 29–36. DOI: 10.1177/026010600401800103. Search in Google Scholar

Akbay, P., Basaran, A.A., Undeger, U. & Basaran, N. (2003). In vitro immunomodulatory activity of flavonoid glycosides from Urtica dioica L. Phytotherapy Research, 17(1), 34–37. DOI: 10.1002/ptr.1068. Search in Google Scholar

Brand-williams W, Cuvelier, M.E. & Berset, C. Use of free radical method to evaluate antioxidant activity. Lebensmittel Wissenschaft and Technologie, 1995, 28(1); 25–30. DOI: 10.1016/S0023-6438(95)80008-5.Dai, J., & Mumper, R.J. (2010). Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules, 15(10), 7313–7352. DOI: 10.3390/molecules15107313. Search in Google Scholar

Złotek, U., Mikulska, S., Nagajek, M. & Świeca, M. (2016). The effect of different solvents and number of extraction steps on the polyphenol content and anti-oxidant capacity of basil leaves (Ocimum basilicum L.) extracts. Saudi J Biol. Sci., 23(5), 628–633. DOI: 10.1016/j. sjbs.2015.08.002. Search in Google Scholar

Khatun, S., Chatterjee, N.C. & Cakilcioglu, U. (2011). Antioxidant activity of the medicinal plant Coleus forskohlii Briq. Afr. J. Biotechnol, 10(13), 2530–2535. DOI: 10.5897/AJB10.2526. Search in Google Scholar

Jamwal, V.L, Gulfam, S, Manhas, R.S, Qayum, A, Kapoor, N, Chouhan, R, Singh, S.K., Chaubey, A. & Gandhi, S.G. (2019). Isolation, identification, and bioactive potential of bacterial endophytes from Coleus. IJBB, 56(5), 392–398. DOI: 10.56042/ijbb.v56i5.28246. Search in Google Scholar

Al-Ghamdi, A.Y. (2021). Phytochemical screening and antimicrobial activity of stem extract of Coleus forskohlii L. collected from Al-Baha Area, Saudi Arabia. GSCBPS, 16(2), 078–086. DOI: 10.30574/gscbps.2021.16.2.0114. Search in Google Scholar

Almulaiky, Y.Q., Kuerban, A., Aqlan, F., Alzahrani, S.A., Baeshen, M.N., Afifi, Ammar A., Al-Shawafi, W. & Alkhaled, M. (2017). In vitro antiglycation, antioxidant properties of Coleus forskohlii’’Balady’’leaves and stem and their antioxidant enzyme activities. Annu. Res. Rev., 1–11. DOI: 10.9734/ARRB/2017/37619. Search in Google Scholar

Velázquez, L., Quiñones, J., Díaz, R., Pateiro, M., Lorenzo, J. M. & Sepúlveda, N. (2021). Natural antioxidants from endemic leaves in the elaboration of processed meat products: Current status. Antioxidants, 10(9), 1396. DOI: 10.3390/antiox10091396. Search in Google Scholar

Naveed, M., Batool, H., Rehman, S.U., Javed, A., Makhdoom, S.I., Aziz, T., & Alhomrani, M. (2022). Characterization and evaluation of the antioxidant, antidiabetic, anti-inflammatory, and cytotoxic activities of silver nanoparticles synthesized using Brachychiton populneus leaf extract. Processes, 10(8), 1521. DOI:10.3390/pr10081521. Search in Google Scholar

Sameeh, M.Y., Mohamed, A.A. & Elazzazy, A.M. (2016). Polyphenolic contents and antimicrobial activity of different extracts of Padina boryana Thivy and Enteromorpha sp marine algae. J. Appl. Pharm. Sci. 6(9), 087–092. DOI: 10.7324/JAPS.2016.60913. Search in Google Scholar

Naveed, M., Bukhari, B., Aziz, T., Zaib, S, Mansoor, M.A, Khan, A.A, Shahzad, M., Dablool, A.S., Alruways, M.W., Almalki, A.A., Alamri, A.S. & Alhomrani, M. (2022). Green Synthesis of Silver Nanoparticles Using the Plant Extract of Acer oblongifolium and Study of Its Antibacterial and Antiproliferative Activity via Mathematical Approaches. Molecules. 30, 27(13), 4226. DOI: 10.3390/molecules27134226. Search in Google Scholar

Naveed, M., Batool, H., Rehman, S.u., Javed, A.; Makhdoom, S.I., Aziz, T., Mohamed, A.A., Sameeh, M.Y., Alruways, M.W., Dablool, A.S., Almalki, A.A., Alamri, A.S., Alhomrani, M. Characterization and Evaluation of the Antioxidant, Antidiabetic, Anti-Inflammatory, and Cytotoxic Activities of Silver Nanoparticles Synthesized Using Brachychiton populneus Leaf Extract. Processes, (2022). 1521. DOI: 10.3390/pr10081521. Search in Google Scholar

Hamouda, A.F., Sameeh, M.Y. & Shrourou, R.M. (2016). Effect of avocado (persea americana), cabbage (brassica oleracea) and ginger (zingiber officinale) on rat liver and thyroid injuries induced by CCl4 (carbon tetrachloride). J. Pharm. Pharmacol, 4(3), 108–118. DOI: 10.17265/2328-2150/2016.03.002. Search in Google Scholar

Mohamed, A.A., Sameeh, M.Y. & El-Beltagi, H.S. (2022). Preparation of Seaweed Nanopowder Particles Using Planetary Ball Milling and Their Effects on Some Secondary Metabolites in Date Palm (Phoenix dactylifera L.) Seedlings. Life, 13(1), 39. DOI: 10.3390/life13010039. Search in Google Scholar

Hayat, P., Khan, I., Rehman, A., Jamil, T., Hayat, A., Rehman, M.U. & Aziz, T. (2023). Myogenesis and Analysis of Antimicrobial Potential of Silver Nanoparticles (AgNPs) against Pathogenic Bacteria. Molecules, 28(2), 637. DOI: 10.3390/molecules28020637. Search in Google Scholar

Laaroussi, H., Aouniti, A., Mokhtari, O., Hafez, B., Sheikh, R.A., Sameeh, M.Y., Manal M., K., Suliman, A., Alderhami, A., Elhenawy, Mohamed, E., 1,Ilyesse, R., Chaouki, B., Belkheir, H., Taibi, B. & Hicham, E., (2022). Experimental and Theoretical Investigations of Argania spinosa’s Extracts on the Antioxidant Activity and Mild Steel Corrosion’s Inhibition in 1 M HCl. Appl. Sci., 12(24), 12641. DOI: 10.3390/app122412641. Search in Google Scholar

Mohamed, A.A., Ali, S.I., Sameeh, M.Y. & El-Razik, T.M.A. (2016). Effect of solvents extraction on HPLC profile of phenolic compounds, antioxidant, and anticoagulant properties of Origanum vulgare. Research Journal of Pharmacy and Technology, 9(11), 2009-2016. DOI: 10.5958/0974- 360X.2016.00410.8. Search in Google Scholar

Sumaira, S., Shazia, K., Jahangir, K., Razia, B., Abid, S., Tariq, A., Majid, A., Abdulhakeem, S.A., Manal, Y.S. & Faten, Z. (2023). Enhancement of shelf-life of food items via immobilized enzyme nanoparticles on varied supports. A sustainable approach towards food safety and sustainability. Food Res. Int, 169, 112940. DOI: 10.1016/j.foodres.2023.112940. Search in Google Scholar

Khan, J., Khurshid, S., Sarwar, A., Aziz, T., Naveed, M., Ali, U., Makhdoom, S.I., Nadeem, A.A., Khan, A.A, Sameeh, M.Y., Alharbi, A.A., Filimban, F.Z., Rusu, A.V., Göksen, G. & Trif, M. (2022). Enhancing Bread Quality and Shelf Life via Glucose Oxidase Immobilized on Zinc Oxide Nanoparticles – A Sustainable Approach towards Food Safety. Sustainability, 14, 14255. DOI: 10.1016/j. foodres.2023.112940. Search in Google Scholar

Saleem, K., Aziz, T., Ali Khan, A., Muhammad, A., Ur Rahman, S., Alharbi, M., Alshammari, A.F. & Alasmari, A. (2023). Evaluating the in-vivo effects of olive oil, soya bean oil, and vitamins against oxidized ghee toxicity. Acta Biochim. Pol. 6549. Search in Google Scholar

Sameeh, M.Y., Khowdiary, M.M., Nassar, H.S., Abdelall, M.M., Amer, H.H., Hamed, A. & Elhenawy, A.A. (2022). Thiazolidinedione Derivatives: In Silico, In Vitro, In Vivo, Antioxidant and Anti-Diabetic Evaluation. Molecules, 27(3), 830. DOI: 10.3390/molecules27030830. Search in Google Scholar

Sameeh, M.Y., Khowdiary, M.M., Nassar, H.S., Abdelall, M.M., Alderhami, S.A. & Elhenawy, A.A. (2022). Discovery potent of thiazolidinedione derivatives as antioxidant, α-amylase inhibitor, and antidiabetic agent. Biomedicines, 10(1), 24. DOI: 10.3390/biomedicines10010024. Search in Google Scholar

Benish, R., Sobia, A., Naureen, Z., Sohail, A., Abid, S., Tariq, A., Metab, A., Abdulrahman, A. & Abdullah, FA. (2023). Evaluating the influence of Aloe barbadensis extracts on edema induced changes in C-reactive protein and interleukin-6 in albino rats through in vivo and in silico approaches. Act Biochmica Polonica 70(2), 425–433. DOI: 10.18388/abp.2020_6705. Search in Google Scholar

eISSN:
1899-4741
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering