Cite

1. Fan, X., Yu, S., Hou, B. & Kim, J.M. (2019). Quantum dots based photocatalytic hydrogen evolution. Isr. J. Chem. 59, 762–773. DOI: 10.1002/ijch.201900029. Open DOISearch in Google Scholar

2. Farzin, M.A. & Abdoos, H. (2021). A critical review on quantum dots: From synthesis toward applications in electro-chemical biosensors for determination of disease-related biomolecules. Talanta. 224, 121828. DOI: 10.1016/j.talanta.2020.121828.33379046 Open DOISearch in Google Scholar

3. Caputo, J.A., Frenette, L.C., Zhao, N., Sowers, K.L., Krauss, T.D. & Weix, D.J. (2017). General and efficient C-C bond forming photoredox catalysis with semiconductor quantum dots. J. Am. Chem. Soc. 139(12), 4250–4253. DOI: 10.1021/jacs.6b13379.28282120 Open DOISearch in Google Scholar

4. Bratskaya, S., Sergeeva, K., Konovalova, M., Modin, E., Svirshchevskaya, E., Sergeev, A., Aleksandr, M. & Alexandr, P. (2019). Ligand-assisted synthesis and cytotoxicity of ZnSe quantum dots stabilized by N-(2-carboxyethyl) chitosans. Colloids Surf. B. 182, 110342. DOI: 10.1016/j.colsurfb.2019.06.071.31299538 Open DOISearch in Google Scholar

5. Ranjbar-Navazi, Z., Omidi, Y., Eskandani, M. & Davaran, S. (2019). Cadmium-free quantum dot-based theranostics. TrAC Trends Anal. Chem. 118, 386–400. DOI: 10.1016/j. trac.2019.05.041. Open DOISearch in Google Scholar

6. Asha, K., Arun, S., Rahul, S., Udayabanu, M. & Ragini, R.S. (2021). Biocompatible and fluorescent water based NIR emitting CdTe quantum dot probes for biomedical applications. Spectrochimica Acta A. 248, 119206. DOI: 10.1016/j. saa.2020.119206. Open DOISearch in Google Scholar

7. W. William, Y., Qu, L., Guo, W. & Peng, X. (2003). Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 15, 2854–2860. DOI: 10.1021/cm034081k. Open DOISearch in Google Scholar

8. Maksim, M., Vera, K., Anton, T., Sergei, C., Anastasiia, S., Viktoria, O., Yulia, G., Mikhail, B., Anatoly F, Yurii, G. & Alexander, B. (2020). FRET-based analysis of AgInS2/ZnAgInS/ZnS quantum dot recombination dynamics. Nanomaterials. 10, 2455. DOI: 10.3390/nano10122455.776328733302496 Open DOISearch in Google Scholar

9. Ma, W., Zhang, Z., Ma, M., Liu, Y., Pan, G., Gao, H. & Mao, Y. (2020). CuGaS2 quantum dots with controlled surface defects as an hole-transport material for high-efficient and stable perovskite solar cells. Sol. Energy. 211, 55–61. DOI: 10.1016/j.solener.2020.09.058. Open DOISearch in Google Scholar

10. Chevallier, T., Benayad, A., Le Blevennec, G. & Chandezon, F. (2017). Method to determine radiative and non-radiative defects applied to AgInS2-ZnS luminescent nanocrystals. Phys. Chem. Chem. Phys. 19, 2359–2363. DOI: 10.1039/C6CP06509K. Open DOISearch in Google Scholar

11. Song, S., Liang, Z., Fu, W. & Peng, T. (2017). Preparation of single-crystalline AgIn5S8 octahedrons with exposed {111} facets and its visible-light-responsive photocatalytic H2 production activity. ACS Appl. Mater. Interfaces. 9, 17013–17023. DOI: 10.1021/acsami.7b01741.28481081 Open DOISearch in Google Scholar

12. Sousa, F.L., Freitas, D., Silva, S. & Robério, R. (2020). Tunable emission of AgIn5S8 and ZnAgIn5S8 nanocrystals: electrosynthesis, characterization and optical application. Mater. Today Chem. 16, 100238. DOI: 10.1016/j.mtchem.2019.100238. Open DOISearch in Google Scholar

13. Torimo to, T., Adachi, T. & Okazaki, K. et al. (2007). Facile synthesis of ZnS− AgInS2 solid solution nanoparticles for a color-adjustable luminophore. J. Am. Chem. Soc. 129(41), 12388–12389. DOI: 10.1021/ja0750470.17887678 Open DOISearch in Google Scholar

14. Tang, X., Ho, W.B.A. & Xue, J.M. (2012). Synthesis of Zn-doped AgInS2 nanocrystals and their fluorescence properties. J. Phys. Chem. C. 116(17), 9769–9773. DOI: 10.1021/jp207711p. Open DOISearch in Google Scholar

15. Luo, Z., Zhang, H. & Huang, J. et al. (2012). One-step synthesis of water-soluble AgInS2 and ZnS–AgInS2 composite nanocrystals and their photocatalytic activities. J. Colloid Interface Sci. 377(1), 27–33. DOI: 10.1016/j.jcis.2012.03.074.22542007 Open DOISearch in Google Scholar

16. Kameyama, T., Takahashi, T. & Machida, T., et al. (2015). Controlling the electronic energy structure of ZnS–AgInS2 solid solution nanocrystals for photoluminescence and photocatalytic hydrogen evolution. J. Phys. Chem. C. 119(44), 24740–24749. DOI: 10.1021/acs.jpcc.5b07994. Open DOISearch in Google Scholar

17. Lan, C.W., Meng, L. & Xu, N. (2022). One-pot synthesis of the direct Z-scheme AgInS2/AgIn5S8 QDs heterojunction for efficient photocatalytic reduction of Cr6+ in neutral condition. Colloid. Surface. A. 632, 127762. DOI: 10.1016/j.colsurfa.2021.127762. Open DOISearch in Google Scholar

18. Kurshanov, D.A., Gromova, Y.A., Cherevkov, S.A., Ushakova, E.V., Kormilina, T.K., Dubavik, A., Fedorov, A.V. & Baranov, A.V. (2018). Non-toxic ternary quantum dots AgInS2 and AgInS2/ZnS: synthesis and optical properties. Opt. Spectros. 125, 1041–1046. DOI: 10.1134/S0030400X1812010X. Open DOISearch in Google Scholar

19. Wang, X., Dai, W., Li, X., Chen, Z., Zheng, Z., Chen, Z., Zhang, G., Xiong, L. & Duo, S. (2020). Effects of L-cysteine on the photoluminescence, electronic and cytotoxicity properties of ZnS:O quantum dots. J. Alloys Compd. 825, 154052. DOI: 10.1016/j.jallcom.2020.154052. Open DOISearch in Google Scholar

20. Esteves, M., Mombrú, D., Romero, M., Fernández-Werner, L., Faccio, R. & Mombr, A.W. (2021) Insights on the structural and electrical transport of sodium titanate nanotubes decorated with CuInS2 quantum dots heterostructures. Appl. Surf. Sci. 535, 147733. DOI: 10.1016/j.apsusc.2020.147733. Open DOISearch in Google Scholar

eISSN:
1899-4741
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering