Acceso abierto

Preparation of hexamethylol melamine resin with low crystallization water and low viscosity for hexamethylol melamine/polyvinyl alcohol composite membrane


Cite

1. Kim, S., Kim, H.J., Kim, H.S. & Lee, H.H. (2006). Effect of Bio–Scavengers on the Curing Behavior and Bonding Properties of Melamine–Formaldehyde Resins. Macromol. Mater. Engin. 291(9), 1027–1034. DOI: 10.1002/mame.200600213.10.1002/mame.200600213 Search in Google Scholar

2. Fataraite, E., Jankauskaite, V., Marazas, G., Milašiene, D. & K.Žukiene. (2009). Viscosity and Surface Properties of Melamine-Formaldehyde Resin Composition. Mater. Sci. 15(3), 250–254. Search in Google Scholar

3. Wang, D.W., Zhang, X.X., Luo, S., Zhao, Q., & Sai, L.I. (2012). Study of preparation and modification and properties of melamine formaldehyde resin foam. J. Func. Mater. Search in Google Scholar

4. Jin, F.L., Li, X. & Park, S.J. (2015). Synthesis and application of epoxy resins: A review. J. Ind. Engin. Chem. 29, 1–11. DOI: 10.1016/j.jiec.2015.03.026.10.1016/j.jiec.2015.03.026 Search in Google Scholar

5. Jiang, J., Wu, Y., Sun, G., Zhang, L. & Feng, X. (2021). Accumulation and Potential Health Risks of Antimony in Atmospheric Particulate Matter. ACS omega. 6(14), 9460–9470. DOI: 10.1021/acsomega.0c06091.10.1021/acsomega.0c06091 Search in Google Scholar

6. Zhu, K., Zhao, Y., Yang, Y., Bai, Y. & Zhao, T. (2020). Icariin Alleviates Bisphenol A Induced Disruption of Intestinal Epithelial Barrier by Maintaining Redox Homeostasis In Vivo and In Vitro. ACS omega. 5(32), 20399–0408. DOI: 10.1021/acsomega.0c02364.10.1021/acsomega.0c02364 Search in Google Scholar

7. Khan, Z.H., Gao, M., Qiu, W. & Song, Z. (2020). Efficient As (III) Removal by Novel MoS2-Impregnated Fe-Oxide– Biochar Composites: Characterization and Mechanisms. ACS omega. 5(22), 13224–13235. DOI: 10.1021/acsomega.0c01268.10.1021/acsomega.0c01268 Search in Google Scholar

8. Zhou, W.R., Jian-Zhang, L.I., Wen-Jun, L.I., Zhi-Ming, Y.U., Zhang, D.R., & Zhao, J.J. (2004). The new progress of urea-formaldehyde resin with low formaldehyde content and its wood-products with low formaldehyde emission. China Adhesives, 13(1), 54–58. Search in Google Scholar

9. Lin, C. (2001). A review of melamine modified ureaformaldehyde resin adhesive. Technology On Adhesion & Sealing. 5, 201–225. Search in Google Scholar

10. Kotova, V.V., Maslosh, V.Z. & Maslosh, O.V. (2013). Dicarboxylic acids amides as an acceptor of formaldehyde in urea-formaldehyde resins. Rus. J. Appl. Chem. 86(6), 841–844. DOI: 10.1134/S1070427213060098.10.1134/S1070427213060098 Search in Google Scholar

11. Palanikkumaran, M., Gupta, K.K., Agrawal, A.K. & Jassal, M. (2009). Highly stable hexamethylolmelamine microcapsules containing n-octadecane prepared by in situ encapsulation. J. Appl. Pol. Sci. 114(5), 2997–3002. DOI: 10.1002/app.30923.10.1002/app.30923 Search in Google Scholar

12. Yang, J. & Li, X.R. (2005). Both Preparation and stability for high solid content etherified melamine-formaldehyde resin. Thermosetting Resin. 16,1589–1756. Search in Google Scholar

13. Sarkar, N.K. & Dounce, A.L. (1961). A spectroscopic study of the reaction of formaldehyde with deoxyribonucleic and ribonucleic acids. Biochimica et Biophysica Acta, 49(1), 160–169. DOI: 10.1016/0006-3002(61)90879-4.10.1016/0006-3002(61)90879-4 Search in Google Scholar

14. Okano, M. & Ogata, Y. (1952). Kinetics of the condensation of melamine with formaldehyde. J. Amer. Chem. Soc. 74(22), 5728–5731. DOI: 10.1021/ja01142a047.10.1021/ja01142a047 Search in Google Scholar

15. Gordon, M., Halliwell, A. & Wilson, T. (1966). Kinetics of the addition stage in the melamine–formaldehyde reaction. J. Appl. Pol. Sci. 10(8), 1153–1170. DOI: 10.1002/app.1966.070100807.10.1002/app.1966.070100807 Search in Google Scholar

16. Manley, T.R. (1973). Thermal Stability of Hexamethylolmelamine. Polymer J. 4(1), 111–113. DOI: 10.1295/polymj.4.111.10.1295/polymj.4.111 Search in Google Scholar

17. Gündüz, G., Keskin, N., Kolak, Ü. & Mavis, B. (2018). Synthesis and characterization of solvent-free hybrid alkyd resin with hyperbranched melamine core. J. Coatings Technol. Res. 15(4), 831–843. DOI: 10.1007/s11998-017-0031-6.10.1007/s11998-017-0031-6 Search in Google Scholar

18. Ding, Z., Ding, Z., Ma, T. & Zhang, H. (2020). Condensation Reaction and Crystallization of Urea-Formaldehyde Resin during the Curing Process. BioResources. 15(2), 2924–2936.10.15376/biores.15.2.2924-2936 Search in Google Scholar

19. Zhang, B., Jiang, S., Du, G., Cao, M., Zhou, X. & Wu, Z. (2021). Polyurea-formaldehyde resin: a novel wood adhesive with high bonding performance and low formaldehyde emission. J. Adhesion. 97(5), 477–492. DOI: 10.1080/00218464.2019.167963110.1080/00218464.2019.1679631 Search in Google Scholar

20. Yan, X.D., Sun, Q.L., Yang, K., Fan, H. & Li, B.G. (2016). Mechanism and kinetics of hexamethylolmelamine methyl etherification. J. Chem. Engin. Chinese Univ. 30(6), 1306–1312. 10.3969/j.issn. DOI: 1003-9015.2016.06.010. Search in Google Scholar

21. Prins, H.J. (2015). The acid catalyzed cannizarro reaction of formaldehyde. Recueil des Travaux Chimiques des Pays-Bas. 71(11), 1131–1136. DOI: 10.1021/jo01056a001.10.1021/jo01056a001 Search in Google Scholar

22. Kim, S.J. & Kim, J.H. (2015). Investigation on the role of ion exchange resin in the crystallization process for the purification of vancomycin. Kor. J. Chem. Engin. 32(3), 465–470. DOI: 10.1007/s11814-014-0222-0.10.1007/s11814-014-0222-0 Search in Google Scholar

23. Shiwei, Chen., Xuchen, Lu., Tizhuang, Wang. & Zhimin, Zhang. (2016). Preparation and characterization of ureaformaldehyde resin/reactive kaolinite composites. Particuology. 24, 203–209. DOI: 10.1016/j.partic.2015.05.007.10.1016/j.partic.2015.05.007 Search in Google Scholar

24. Kai, K., Yu, W., Wei, Y., Xie, B.H. & Yang, M.B. (2012). Crystallization and reinforcement of poly (vinylidene fluoride) nanocomposites: Role of high molecular weight resin and carbon nanotubes. Pol. Testing. 31(1), 117–126. DOI: 10.1016/j. polymertesting.2011.10.005. Search in Google Scholar

25. Jahromi, S., Litvinov, V. & Geladé, E. (1999). Physical gelation of melamine formaldehyde resin solutions. II. A combined light-scattering and low-resolution relaxation proton NMR study. J. Pol. Sci. Part B: Pol. Phys. 37(23), 3307–3318. DOI: 10.1002/(SICI)1099–0488(19991201)37. Search in Google Scholar

26. Jahromi, S. (1999). Storage stability of melamineformaldehyde resin solutions, 1. The mechanism of instability. Macromolec. Chem. Phys. 200(10), 2230–2239. DOI: 10.1002/(SICI)1521-3935(19991001)200:103.0.CO;2-U Search in Google Scholar

27. Xu, G., Liang, J., Zhang, B., Wu, Z., Lei, H. & Du, G. (2021). Performance and structures of urea-formaldehyde resins prepared with different formaldehyde solutions. Wood Sci. Technol. 1–19. 1 DOI: 0.1007/s00226-021-01280-y. Search in Google Scholar

28. Bilen, C.S., Harrison, N. & Morantz, D.J. (1979). Influence of thermal transformations on room-temperature phosphorescence of doped hexamethylol-melamine. Polymer. 20(12), 1515–1521. DOI: 10.1016/0032-3861(79)90018-1.10.1016/0032-3861(79)90018-1 Search in Google Scholar

29. Liu, K., Su, C., Ma, W., Li, H., Zeng, Z. & Li, L. (2020). Free formaldehyde reduction in urea-formaldehyde resin adhesive: Modifier addition effect and physicochemical property characterization. Bio Res. 15(2), 2339–2355.10.15376/biores.15.2.2339-2355 Search in Google Scholar

30. Liu, R., Zhang, X., Gao, S., Liu, X., Wang, Z. & Yan, J. (2016). Bio-based epoxy-anhydride thermosets from six-armed linoleic acid-derived epoxy resin. Rsc Adv. 6(58), 52549–52555.10.1039/C6RA09077J Search in Google Scholar

31. Wu, Z., Lei, H., Du, G., Cao, M., Xi, X. & Liang, J. (2016). Urea–formaldehyde resin prepared with concentrated formaldehyde. J. Adhes. Sci. Technol. 30(24), 2655–2666. DOI: 10.1080/01694243.2016.1193963.10.1080/01694243.2016.1193963 Search in Google Scholar

32. Henriques, A., Paiva, N., Bastos, M., Martins, J.M., Carvalho, L. & Magalhaes, F. (2017). Improvement of storage stability and physicochemical properties by addition of benzoguanamine in melamine-formaldehyde resin synthesis. J. Appl. Pol. Sci. 134(32), 45185.10.1002/app.45185 Search in Google Scholar

33. Bretterbauer, K. & Schwarzinger, C. (2012). Melamine derivatives-a review on synthesis and application. Current Org. Synthesis. 9(3), 342–356.10.2174/157017912801270612 Search in Google Scholar

34. Chen, S., Lu, X., Pan, F., Wang, T. & Zhang, Z. (2017). Preparation and characterization of urea-formaldehyde resin/reactive montmorillonite composites. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 32(4), 783–790. DOI: 10.1007/s11595-017-1668-9.10.1007/s11595-017-1668-9 Search in Google Scholar

35. Savotchenko, S. & Kovaleva, E. (2021). The equation of glass transition of epoxy diane resin modified with the nanoparticle fillers. Polymer Bull. 1–12. DOI: 10.1007/s00289-021-03844-1.10.1007/s00289-021-03844-1 Search in Google Scholar

36. Kazuhiro, Y., Polyzois, G.L., Frangou, M.J. & Hiroshi, M. (2018). Evaluation of the frequency and temperature dependence of the dynamic mechanical properties of acetal resins. Dental Mater. J. 37(1), 146–151. DOI: 10.4012/dmj.2017-037.10.4012/dmj.2017-03728954941 Search in Google Scholar

37. J.M., Pérez, F., Rodríguez, Alonso, M.V. & Oliet, M. (2011). Time–temperature–transformation cure diagrams of phenol–formaldehyde and lignin–phenol–formaldehyde novolac resins. J. Appl. Pol. Sci. 119(4), 2275–2282. DOI: 10.1002/app.32866.10.1002/app.32866 Search in Google Scholar

38. Stark, W., Jaunich, M. & McHugh, J. (2013). Cure state detection for pre-cured carbon-fibre epoxy prepreg (CFC) using Temperature-Modulated Differential Scanning Calorimetry (TMDSC). Polymer testing. 32(7), 1261–1272. DOI: 10.1016/j. polymertesting.2013.07.007. Search in Google Scholar

39. Hancock, B.C. & Zografi, G. (1994). The relationship between the glass transition temperature and the water content of amorphous pharmaceutical solids. Pharmac. Res. 11(4), 471–477. DOI: 10.1023/A:101894181074410.1023/A:1018941810744 Search in Google Scholar

40. Liu, W., Xie, Y., Xie, Q., Fang, K. & Chen, H. (2019). Solvent–Solvent Cooling Crystallization: An Effective Method to Control the Morphology and Size of Ammonium Perchlorate Crystals. Crys. Res. Technol. 54(10), 1900065. DOI: 10.1002/crat.201900065.10.1002/crat.201900065 Search in Google Scholar

41. Bosq, N., Guigo, N., Persello, J. & Sbi Rr Azzuoli, N. (2019). Crystallization of polytetrafluoroethylene in a wide range of cooling rates: Nucleation and diffusion in the presence of nanosilica clusters. Molecules. 24(9), 1797. DOI: 10.3390/molecules24091797.10.3390/molecules24091797653940031075909 Search in Google Scholar

42. Dai, G., Zhan, L. & Guan, C. (2021). The effect of cooling rate on crystallization behavior and tensile properties of CF/PEEK composites. J. Pol. Engin. DOI: 10.1515/polyeng-2020-0356.10.1515/polyeng-2020-0356 Search in Google Scholar

43. Kwak, E.A., Kim, S.J. & Kim, J.H. (2012). Effect of ion exchange resin on increased surface area crystallization process for purification of vancomycin. Korean J. Chem. Engin. 29(11), 1487–1492. DOI: 10.1007/s11814-012-0135-8.10.1007/s11814-012-0135-8 Search in Google Scholar

44. Lamberti, G. (2011). Isotactic polypropylene crystallization: analysis and modeling. Europ. Pol. J. 47(5), 1097–1112. DOI: 10.1016/j.eurpolymj.2011.02.005.10.1016/j.eurpolymj.2011.02.005 Search in Google Scholar

eISSN:
1899-4741
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering