Acceso abierto

Molecular docking, theoretical calculations, synthesis of Ru(III), Pd(II) and VO(II) complexes and activity determination as antibacterial and antioxidant


Cite

1. Yaul, A.R., Dhande, V.V., Pethe, G.B. & Aswar, A.S. (2014). Synthesis, characterization, biological and electrical conductivity studies of some Schiff base metal complexes. Bull. Chem. Soc. Ethiop. 28, 255. DOI: 10.4314/bcse.v28i2.9.10.4314/bcse.v28i2.9 Search in Google Scholar

2. Shelke, V.A., Jadhav, S.M., Shankarwar, S.G., Munde, A.S. & Chondhekar, T.K. (2011). Synthesis, characterization, antibacterial and antifungal studies of some transition and rare earth metal complexes of N-benzylidene-2-hydroxybenzohydrazide. Bull. Chem. Soc. Ethiop. 25, 381. DOI: 10.4314/bcse.v25i3.68590.10.4314/bcse.v25i3.68590 Search in Google Scholar

3. Altntop, M.D., Özdemir, A., Turan-Zitouni, G., Ilgin, S., Atli, Ö., Işcan, G. & Kaplancikli, Z.A. (2012). Synthesis and biological evaluation of some hydrazone derivatives as new anticandidal and anticancer agents. Eur. J. Med. Chem. 58, 299. DOI: 10.1016/j.ejmech.2012.10.011.10.1016/j.ejmech.2012.10.01123142671 Search in Google Scholar

4. Xu, J., Zhou, T., Xu, Z., Gu, X., Wu, W., Chen, H., Wang, Y., Wang, L. Zhu, T. & Chen, R.H. (2017). Synthesis, crystal structures and antitumor activities of copper(II) complexes with a 2-acetylpyrazine isonicotinoyl hydrazone ligand. J. Mol. Struct. 1128, 448. DOI: 10.1016/j.molstruc.2016.09.016.10.1016/j.molstruc.2016.09.016 Search in Google Scholar

5. Netalkar, P.P., Netalkar, S.P., Budagumpi, S. & Revankar. V.K. (2014). Synthesis, crystal structures and characterization of late first row transition metal complexes derived from benzothiazole core: Anti-tuberculosis activity and special emphasis on DNA binding and cleavage property. Eur. J. Med. Chem. 2014, 79, 47. DOI: 10.1016/j.ejmech.2014.03.083.10.1016/j.ejmech.2014.03.08324721314 Search in Google Scholar

6. Gökçe, M., Utku, S. & Küpeli, E. (2009). Synthesis and analgesic and anti-inflammatory activities 6-substituted-3(2H)-pyridazinone-2-acetyl-2-(p-substituted/nonsubstituted benzal) hydrazine derivatives. Eur. J. Med. Chem. 44, 3760. DOI: 10.1016/j.ejmech.2009.04.048.10.1016/j.ejmech.2009.04.04819535179 Search in Google Scholar

7. Kaushik, D., Khan, S.A., Chawla, G. & Kumar, S. (2010). N’-[(5-chloro-3-methyl-1-phenyl-Hpyrazol- 4-yl)methylene] 2/4-substituted hydrazides: Synthesis and anticonvulsant activity. Eur. J. Med. Chem. 45, 3943. DOI: 10.1016/j.ejmech.2010.05.049.10.1016/j.ejmech.2010.05.04920573423 Search in Google Scholar

8. Bolos, C.A., Nikolov, G.S., Ekateriniadour, L., Kortsaris, A. & Kyriakidis, D.A. (1998). Structure- Activity Relationships for Some Diamine, Triamine and Schiff Base Derivatives and their Copper(II) Complexes. Metal Based Drugs. 5, 323.10.1155/MBD.1998.323236514518475868 Search in Google Scholar

9. Osowole, A.A. & Festus, C. (2013). Synthesis, characterisation and antibacterial activities of some metal(II) complexes of 3-(-1-(2-pyrimidinylimino)methyl -2-napthol. Elixir Appl. Chem. 59, 15843. Search in Google Scholar

10. Sharma, N.K., Ameta, R.K. & Singh, M. (2016). Biological Impact of Pd (II) Complexes: Synthesis, Spectral Characterization, In Vitro Anticancer, CT-DNA Binding, and Antioxidant Activities. Inter. J. Med. Chem. ID 9245619. DOI: 10.1155/2016/9245619.10.1155/2016/9245619477190326989511 Search in Google Scholar

11. Shakdofa, M.E., Al-Hakimi, A.N., Elsaied, F.A., Alasbahi, S.O. & Alkwlini, A.M., (2017). Synthesis, Characterization and bioactivity Zn2+, Cu2+, Ni2+, Co2+, Mn2+, Fe3+, Ru3+, VO2+ and UO2 2+ complexes of 2-Hydroxy-5-((4-nitrophenyl) diazenyl) Benzylidene)-2-(p-tolylamino)acetohydrazide. Bull. Chem. Soc. Ethiop, 31, 75. DOI: 10.4314/bcse.v31i1.7.10.4314/bcse.v31i1.7 Search in Google Scholar

12. Al-Hazm, G.A., Abou-Melha, K.S., Althagafi, I., El-Metwaly, N., Shaaban, F., Abdul Galil, M.S., Mansour, S., Abdul Galil, A. & El-Bindar, A. (2020).Synthesis and structural characterization of oxovanadium(IV) complexes of dimedone derivatives. Appl. Organomet. Chem., 34, e5672. DOI: 10.1002/aoc.5672.10.1002/aoc.5672 Search in Google Scholar

13. El-Gammal, O.A., Mohamed, F.Sh., Rezk, G.N. & El--Bindar, A. (2021). Synthesis, characterization, catalytic, DNA binding and antibacterial activities of Co(II), Ni(II) and Cu(II) complexes with new Schiff base ligand. Mol. Liq. 326, 115223. DOI: https://doi.org/10.1016/j.molliq.2020.115223.10.1016/j.molliq.2020.115223 Search in Google Scholar

14. El-Saied, F.A., Salem, T.A., Aly, S.A. & Shakdofa, M.M.E. (2017) Evaluation of hyperglycemic effect of synthetic Schiff base vanadium(IV) complexes. Pharm. Chem. J. 51, 833. DOI: 10.1007/s11094-017-1702-4.10.1007/s11094-017-1702-4 Search in Google Scholar

15. Bassett, J., Denney, R.C., Jeffery, G.H. & Mendham, J. Vogel’s Textbook of Quantitative Inorganic Analysis Including Elementary Instrumental Analysis, 4th edition, Longman Group, London. 1978, 316. Search in Google Scholar

16. Monteiro, N.K. & Firme, C.L. (2015). Teaching Thermodynamic, Geometric and Electronic Aspects of Diels-Alder Cycloadditions by Using Computational Chemistry – An Undergraduate Experiment. World J. Chem. Educat. 3, 141. DOI: 10.12691/wjce-3-6-3. Search in Google Scholar

17. Hay, P.J. & Wadt, W.R. (1985). Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 82, 270. DOI: 10.1063/1.448975.10.1063/1.448975 Search in Google Scholar

18. Dennington, R., Keith, T. & Millam, J. Gauss view version 5, Semichem Inc. 2009. Search in Google Scholar

19. Ismael, M., Abdel-Mawgoud, A.A.M., Rabia, M.K. & Abdou, A. (2021). Ni(II) mixed-ligand chelates based on 2-hydroxy-1-naphthaldehyde as antimicrobial agents: Synthesis, characterization, and molecular modeling. J. Mol. Liq. 330, 115611. DOI: 10.1016/j.molliq.2021.115611.10.1016/j.molliq.2021.115611 Search in Google Scholar

20. Aly, S.A. & Fathalla, S.K. (2020). Preparation, characterization of some transition metal complexes of hydrazone derivatives and their antibacterial and antioxidant activities. Arbian J. Chem. 13, 3735. DOI: 10.1016/j.arabjc.2019.12.003.10.1016/j.arabjc.2019.12.003 Search in Google Scholar

21. Blois, M.S. (1958). Antioxidant determinations by the use of a stable Free radical. Nature. 181, 1199. DOI: 10.1038/1811199a0.10.1038/1811199a0 Search in Google Scholar

22. Glucin, I. (2006). Antioxidant and antiradical activities of L-carnitineX. Life Sci. 78(8), 803. DOI: 10.1016/j.lfs.2005.05.103.10.1016/j.lfs.2005.05.10316253281 Search in Google Scholar

23. Glucin, I. (2006). Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid). Toxicol. 217, 213. DOI: 10.1016/j.tox.2005.09.011.10.1016/j.tox.2005.09.01116243424 Search in Google Scholar

24. Ak, T. & Glucin, I. (2008). Antioxidant and radical scavenging properties of curcumin. Chem. Biol. Interact. 174, 27. DOI: 10.1016/j.cbi.2008.05.003.10.1016/j.cbi.2008.05.00318547552 Search in Google Scholar

25. Geary, W.J., (1971). The Use of Conductivity Measurements in Organic Solvents for the Characterisation of Coordination Compounds. Coord. Chem. Rev. 7, 81–122. DOI: 10.1016/S0010-8545(00)80009-0.10.1016/S0010-8545(00)80009-0 Search in Google Scholar

26. Dhanaraj, C.J. & Johnson, J. (2017). DNA interaction, antioxidant and in vitro cytotoxic activities of some mononuclear metal(II) complexes of a bishydrazone ligand. Mater. Sci. Eng. C. 78, 1006. DOI: 10.1016/j.msec.2017.04.152.10.1016/j.msec.2017.04.15228575934 Search in Google Scholar

27. Al-Ashqer, S., Abou-Melha, K.S., Al-Hazmi, G.A., Saad, F.A. & El-Metwaly, N.M. (2014). Spectral studies on a series of metal ion complexes derived from pyrimidine nucleus, TEM, biological and γ-irradiation effect. Spectrochim. Acta, Part A. 132, 751. DOI: 10.1016/j.saa.2014.05.084.10.1016/j.saa.2014.05.08424956491 Search in Google Scholar

28. Aly, S.A. (2017). Spectrochemical study the effect of high energetic ionization radiation on Ru(III), Pd(II) and Hg(II) complexes. J. Radiat. Res. Appl. Sci. 10, 89. DOI: 10.1016/j. jrras.2016.12.001. Search in Google Scholar

29. El-Boraey, H.A. & Serag El-Din, A.A. (2014). Transition metal complexes of a new 15-membered [N5] pentaazamacrocyclic ligand with their spectral and anticancer studies. Spectrochim. Acta A. 132, 663. DOI: 10.1016/j.saa.2014.05.018.10.1016/j.saa.2014.05.01824892547 Search in Google Scholar

30. Venkatachalam, G. & Ramesh, R. (2006). Ruthenium(III) bis-bidentate Schiff base complexes mediated transfer hydrogenation of imines. Inorg. Chem. Commun, 9, 703. DOI: 10.1016/j.inoche.2006.04.012.10.1016/j.inoche.2006.04.012 Search in Google Scholar

31. El-Boraey, H.A. (2012). Coordination behavior of tetraaza [N4] ligand towards Co(II), Ni(II), Cu(II), Cu(I) and Pd(II) complexes: Synthesis, spectroscopic characterization and anticancer activity. Spectrochim. Acta A, 97, 255. DOI: 10.1016/j.saa.2012.05.077.10.1016/j.saa.2012.05.07722765944 Search in Google Scholar

32. Geeta, B., Shravankumar, K., Muralidhar, P., Ravikrishna, E.E. Sarangapani, E., Krishna, K. & Ravinder, V. (2010). Binuclear cobalt(II), nickel(II), copper(II) and palladium(II) complexes of a new Schiff-base as ligand: synthesis, structural characterization, and antibacterial activity. Spectrochim. Acta A, 77, 911. DOI: 10.1016/j.saa.2010.08.004.10.1016/j.saa.2010.08.00420801709 Search in Google Scholar

33. Al-Ahmary, K.M., Soliman, S.M., Mekheimer, R.A., Habeeb, M.M. & Alenezi, M.S. (2017). Synthesis, spectral studies and DFT computational analysis of hydrogen bonded-charge transfer complex between chloranilic acid with 2,4-diamino--quinoline-3-carbonitrile in different polar solvents. J. Mol. Liq., 231, 602.10.1016/j.molliq.2017.02.038 Search in Google Scholar

34. Ismael, M., Abdel-Mawgoud, A.M., Rabia, M.K. & Abdou, A. (2021). Synthesis, characterization, molecular modeling and preliminary biochemical evaluation of new copper(II) mixed-ligand complexes. J. Mol. Str., 1227, 129695.10.1016/j.molstruc.2020.129695 Search in Google Scholar

35. Prasad, K.S., Kumar, L.S., Revanasiddappa, H.D., Vijay, B. & Jayalakshmi, B. (2011). Oxovanadium Complexes with Bidentate N, O Ligands: Synthesis, Characterization, DNA Binding, Nuclease Activity and Antimicrobial Studies Chem. Sci. J., 28, 2011. https://astonjournals.Com/csj. Search in Google Scholar

36. El-Boraey, H.A., El-Salamony, M.A. & Hathout, A.A. (2016). Macrocyclic [N5] transition metal complexes: synthesis, characterization and biological activities. J. Incl. Phenom. Macrocycl. Chem., 86, 153. DOI: 10.1007/s108047-016-0649-5 Search in Google Scholar

37. El-Boraey, H.A. & El-Salamony, M.A. (2019). Transition Metal Complexes with Polydentate Ligand: Synthesis, Characterization, 3D Molecular Modelling, Anticancer, Antioxidant and Antibacterial Evaluation. J. Inorg.Organomet. Poly. Mat. 29, 684. DOI: 10.1007/s10904-018-1042-110.1007/s10904-018-1042-1 Search in Google Scholar

38. Lang, P.T., Moustakas, D., Brozell, S., Carrascal, N., Mukherjee, S., Pegg, S., Raha, K., Shivakumar, D. & Rizzo, R. (2015). D.J.T.O.U.D.W.-S.F. Case, DOCK 6.0 Users Manual. Search in Google Scholar

39. Strushkevich, N., Usanov, S.A. & Park, H.W. (2010). Structural Basis of Human CYP51 Inhibition by Antifungal Azoles. J. Mol. Biology, 397, 1067. DOI: 10.1016/j.jmb.2010.01.075.10.1016/j.jmb.2010.01.07520149798 Search in Google Scholar

40. Sebastian, S., Schreiber, S., Haupt, V., Adasme, M. and Schroeder, M. (2015). PLIP: fully automated protein–ligand interaction profiler Nucleic Acids Research, 43, W443. DOI: 10.1093/nar/gkv315.10.1093/nar/gkv315448924925873628 Search in Google Scholar

41. Balachandran, C., Kumar, P.S., Arun, Y., Duraipandiyan, V., Sundaram, R.L., Vijayakumar, A., Balakrishna, K., Ignacimuthu, S., Al-Dhabi, N. & Perumal, P.T. (2015). Antimicrobial, antioxidant, cytotoxic and molecular docking properties of N--benzyl-2,2,2-trifluoroacetamide. Appl. Nanosc., 5, 207. DOI: 10.1007/s13204-014-0307-4.10.1007/s13204-014-0307-4 Search in Google Scholar

42. Koleva, I.I., Beek, T.V., Linssen, J.P., De Groot, A. & Evstatieva, L.N.(2002). Screening of Plant Extracts for Antioxidant Activity: a Comparative Study on Three Testing Methods. Phytochem. Anal., 13, 8. DOI: 10.1002/pca.611.10.1002/pca.61111899609 Search in Google Scholar

43. Alici, E.H., Gunsel, A., Akin, M., Bilibicli, A.T., Arabaci, G. & Yarasir, M.N. (2018). Synthesis, characterization, antioxidant and antibacterial properties of non-peripherally and peripherally tetra-substituted phthalocyanines J. Coord. Chem. 71, 3077. DOI: 10.1080/00958972.2018.1511778.10.1080/00958972.2018.1511778 Search in Google Scholar

eISSN:
1899-4741
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering