Acceso abierto

Heat effects in the reaction of sulfuric acid with ilmenites influenced by initial temperature and acid concentration


Cite

1. Blakey, R.R. & Hall, J.E., Titanium Dioxide, in Pigment Handbook (P.A. Lewis, Ed.), Wiley, NY, 1987. Search in Google Scholar

2. Winkler, J. (2003). Titanium Dioxide, Vincentz Network, Hannover. Search in Google Scholar

3. Gázquez, M.J., Bolívar, J.P., García-Tenorio, R. & Vaca, F., (2009). Physicochemical characterization of raw materials and co-products from the titanium dioxide industry, J. Hazard. Mater., 166, 1429–1440. DOI: 10.1016/j.jhazmat.2008.12.067.10.1016/j.jhazmat.2008.12.06719167156 Search in Google Scholar

4. Mantero, J., Gázquez, M.J., Bolívar, J.P., García-Tenorio, R. & Vaca, F. (2013). Radioactive characterization of the main materials involved in the titanium dioxide production process and their environmental radiological impact. J. Environ. Radio-act. 120, 26–32. DOI: 10.1016/j.jenvrad.2013.01.002.10.1016/j.jenvrad.2013.01.00223416226 Search in Google Scholar

5. Han, G., Wen, S., Wang, H. & Feng, Q. (2020). Interaction mechanism of tannic acid with pyrite surfaces and its response to flotation separation of chalcopyrite from pyrite in a low-alkaline medium. J. Mater. Res. Technol., 9, 4421–4430. DOI: 10.1016/j.jmrt.2020.02.067.10.1016/j.jmrt.2020.02.067 Search in Google Scholar

6. Zhang, Q., Wen, S., Feng, Q. & Liu, J. (2021). Surface modification of azurite with lead ions and its effects on the adsorption of sulfide ions and xanthate species. Appl. Surf. Sci. 543, 148795. DOI: 10.1016/j.apsusc.2020.148795.10.1016/j.apsusc.2020.148795 Search in Google Scholar

7. Dubenko, A.V., Nikolenko, M.V., Aksenenko, E.V., Kostyniuk, A. & Likozar, B. (2020). Mechanism, Thermodynamics and Kinetics of Rutile Leaching Process by Sulfuric Acid Reactions. Processes 8, 640. DOI: 10.3390/pr8060640.10.3390/pr8060640 Search in Google Scholar

8. Dubenko, A.V., Nikolenko, M.V., Kostyniuk, A. & Likozar, B. (2020). Sulfuric Acid Leaching of Altered Ilmenite Using Thermal. Mechanical and Chemical Activation. Minerals 10, 538. DOI: 10.3390/min10060538.10.3390/min10060538 Search in Google Scholar

9. Liang, B., Li, C., Zhang, C. & Zhang, Y. (2005). Leaching kinetics of Panzhihua ilmenite in sulfuric acid. Hydrometallurgy 76, 173–179. DOI: 10.1016/j.hydromet.2004.10.006.10.1016/j.hydromet.2004.10.006 Search in Google Scholar

10. Johnson, R.W., Audy, S.W. & Unwin, S.D. (2003). Essential Practices for Managing Chemical Reactivity Hazards, New York, AIChE.10.1002/9780470925300 Search in Google Scholar

11. Bretherick’s Handbook of Reactive Chemical Hazards (P.G. Urben, Ed.), Academic Press, Amsterdam, 2006. Search in Google Scholar

12. Zheng, Y., Zhang, C. & Liu, H. (2020).The determination of isobaric heat capacities of liquid by the new flow calorimeter. Thermoch. Acta 690, 178644. DOI: 10.1016/j.tca.2020.178644.10.1016/j.tca.2020.178644 Search in Google Scholar

13. Ding, J., Yu, L., Wang, J., Xu, Q. & Ye, S. (2019). A symmetric dual-channel accelerating rate calorimeter with the varying thermal inertia consideration. Thermoch. Acta 678, 178304. DOI: /10.1016/j.tca.2019.178304. Search in Google Scholar

14. Hany, C., Lebrun, H., Pradere, C., Toutain, J. & Batsale, J.Ch. (2010). Thermal analysis of chemical reaction with a continuous microfluidic calorimeter. Chem. Engin. J. 160, 814–822. DOI: 10.1016/j.cej.2010.02.048.10.1016/j.cej.2010.02.048 Search in Google Scholar

15. Duh, Y.S., Hsu, C.C., Kao, C.S. & Yu, S.W. (1996). Applications of reaction calorimetry in reaction kinetics and thermal hazard evaluation. Thermoch. Acta, 285, 67–9.10.1016/0040-6031(96)02899-7 Search in Google Scholar

16. Ortín, J., Torra, V. & Tachoire, H. (1987). Thermal power measurements in a differential-heat-conduction-scanning calorimeter at low temperature-scanning rates. Thermoch. Acta 121, 333–342. DOI: 10.1016/0040-6031(87)80183-1.10.1016/0040-6031(87)80183-1 Search in Google Scholar

17. Leung, J.C., Fauske, H.K. & Fisher, H.G. (1986). Thermal runaway reactions in a low thermal inertia apparatus. Thermoch. Acta 104, 13–29. DOI: 10.1016/0040-6031(86)85180-2.10.1016/0040-6031(86)85180-2 Search in Google Scholar

18. Jabłoński, M. & Tylutka, S. (2016). The influence of initial concentration of sulfuric acid on the degree of leaching of the main elements of ilmenite raw materials. J. Thermal Anal. Calorim. 124, 355–361. DOI: 10.1007/s10973-015-5114-y.10.1007/s10973-015-5114-y Search in Google Scholar

19. Przepiera, A., Jabłoński, M. & Wiśniewski, M. (1993). Study of kinetics of reaction of titanium raw materials with sulphuric acid. J. Thermal Anal. 40, 1341–1345. DOI: 10.1007/BF02546898.10.1007/BF02546898 Search in Google Scholar

20. Jabłoński, M. (2009). Influence of particle size distribution on thermokinetics of ilmenite with sulphuric acid reaction. J. Thermal Anal. Calorim. 96, 971–977. DOI: 10.1007/s10973-009-0048-x.10.1007/s10973-009-0048-x Search in Google Scholar

21. Jabłoński, M., Ławniczak-Jabłońska, K. & Klepka, M.T. (2012). Investigation of phase composition of ilmenites and influence of this parameter on thermokinetics of reaction with sulphuric acid. J. Thermal Anal. Calorim. 109, 1379–1385. DOI: 10.1007/s10973-011-2136-y.10.1007/s10973-011-2136-y Search in Google Scholar

22. Parapari, P.S., Irannajad, M. & Mehdilo, A. (2016). Modification of ilmenite surface properties by superficial dissolution method. Miner. Engin., 92, 160–167. DOI: 10.1016/j.mineng.2016.03.016.10.1016/j.mineng.2016.03.016 Search in Google Scholar

23. Jabłoński, M. (2010). Investigation of thermal power of reaction of titanium slag with sulphuric acid. Central Europ. J. Chem. 8(1), 149–154. DOI: 10.2478/s11532-009-0127-7.10.2478/s11532-009-0127-7 Search in Google Scholar

24. Jabłoński, M. (2008). Investigation of reaction products of sulphuric acid with ilmenite, J.Thermal Anal. Calorim., 93, 717–720. DOI: 10.1007/s10973-008-9134-8.10.1007/s10973-008-9134-8 Search in Google Scholar

25. Dobrovolski, I.P. (1988). The chemistry and technology of the oxide compounds of titanium, Sverdlovsk: UrO AN SSSR. Search in Google Scholar

26. Wagman, D.D., Evans, W.H., Parker, V.B., Schumm, R.H., Halow, I., Bailey, S.M., Churney, K.L. & Nuttall, R.L. (1982. The NBS Tables of Chemical Thermodynamic Properties. J. Phys. Chem. Ref. Data 11, Suppl. 2. Search in Google Scholar

27. Barin, I. & Knacke, O. (1973). Thermochemical properties of inorganic substances, Springer-Verlag Berlin Heildelberg New York. Search in Google Scholar

28. Carl, L. (2009). Yaws’ Handbook of Thermodynamic Properties for Hydrocarbons and Chemicals, Publisher Knovel, Electronic ISBN 978-1-60119-797-9. Search in Google Scholar

29. Ginsberg, T., Modigell, M. & Wilsmann, W. (2011). Thermochemical characterization of the calcination process step in the sulphate method for production of titanium dioxide, Chemical Engineering Research and Design, 89, 990–994. DOI: 10.1016/j.cherd.2010.11.006.10.1016/j.cherd.2010.11.006 Search in Google Scholar

eISSN:
1899-4741
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering