Acceso abierto

Modeling and computing of stress and strain distribution in UHMW polyethylene elements of chosen artificial human joints


Cite

1. Scifert, Ch.F., Brown, T. & Lipman, J. (1999). Finite element analysis of a novel design approach to resisting total hip dislocation, Clin. Biomech. 14, pp. 697–703.10.1016/S0268-0033(99)00054-6Search in Google Scholar

2. Ryniewicz, A.M. & Madej, T. (2002). Analiza naprężeń i przemieszczeń w strefie roboczej endoprotezy stawu biodrowego, Mech. Med. 6, pp. 127–134.Search in Google Scholar

3. El-Shiekh, F. & Hussam, E.D. (2002). Finite element simulation of hip joint replacement under static and dynamic loading, PhD thesis, Dublin City University.Search in Google Scholar

4. John, A. & Orantek, P. (2006). Symulacja oddziaływań dynamicznych w stawie biodrowym ze sztuczną panewką, Model. Inż. 32, pp. 211–218.Search in Google Scholar

5. Madej, T. & Ryniewicz, A. (2013). Modelowanie i symulacje wytrzymałościowe w stawie biodrowym zaopatrzonym protezą nakładkową jako procedura diagnostyczna przed zabiegiem kapoplastyki, Tribologia 2–2013.Search in Google Scholar

6. Gierzyńska-Dolna, M. (1996). Odporność na zużycie materiałów stosowanych na endoprotezy, Mech. Medyc. Rzeszów, p. 131–141.Search in Google Scholar

7. Polyakov, A., Pakhaliuk, V., Kalinin, M. & Kramar, V. (2015). System Analysis and Synthesis of Total Hip Joint Endoprosthesis, Proc. Engin. 100 pp. 530–538. DOI: 10.1016/j. proeng.2015.01.400.Search in Google Scholar

8. Xu, X., Luo, D., Guo, Ch. & Rong, Q. (2017). A custom-made temporomandibular joint prosthesis for fabrication by selective laser melting: Finite element analysis, Medic. Engin. & Phys. 46, August 2017, Pages 1–11. DOI: 10.1016/j. medengphy.2017.04.012.Search in Google Scholar

9. Eckert, J., Jaeger, S., Klotz, M., Schwarze, M. & Bitsch, R. (2018). Can intraoperative measurement of bone quality help in decision making for cementless unicompartmental knee arthroplasty? The Knee 25, Issue 4, August 2018, Pages 609–616 DOI:10.1016/j.knee.2018.03.013.10.1016/j.knee.2018.03.013Search in Google Scholar

10. Jahnkea, A., Ulloaa, C., Seegera, J. & Rickert, M. (2018). Analysis of the elastic bending characteristics of cementless short hip stems considering the valgus alignment of the prosthetic stem, Clin. Biomech. 52 (2018) 49–56. DOI: 10.1016/j. clinbiomech.2018.01.006.Search in Google Scholar

11. Dathe, H., Gezzi, R., Fiedler, Ch., Kubein-Meesenburg, D. & Nägerl, H. (2016) The description of the human knee as four-bar linkage, Acta Bioengin. Biomech. 18, 4. DOI: 10.5277/ABB-00464-2015-03.Search in Google Scholar

12. Nagerl, H., Dathe, H., Fiedler, Ch., Gowers, L., Kirsch, S., Kubein-Meesenburg, D., Dumont, C. & Wachowski, M.M. (2015) The morphology of the articular surfaces of biological knee joints provides essential guidance for the construction of functional knee endoprostheses. Acta Bioengin. Biomech. 17, 2. DOI: 10.5277/ABB-00119-2014-02.Search in Google Scholar

13. Mielińska, A., Czamara, A., Szuba, Ł. & Będziński, R. (2015) Biomechanical characteristics of the jump down of healthy subjects and patients with knee injuries, Acta Bioengin. Biomech. 17, 2. DOI: 10.5277/ABB-00208-2014-04.Search in Google Scholar

14. Gierzyńska-Dolna, M. (2002). Biotribology. Częstochowa. Publishing of Czestochowa University of Technology.Search in Google Scholar

15. Gierzyńska-Dolna, M. & Kubacki, J. (1999). Specificity of wear of hip and knee endoprostheses. Materials of II Symposium of Engineering Orthopedics and Protetics, IOP’99 Białystok, 45–51.Search in Google Scholar

16. Olinski, M., Gronowicz, A., Handke, A. & Ceccarelli, M. (2016) Design and characterization of a novel knee articulation mechanism. Int. J. Appl. Mech. Engin. 21, 3. DOI: 10.1515/ijame-2016-0037.10.1515/ijame-2016-0037Search in Google Scholar

17. Ciszkiewicz, A. & Knapczyk, J. (2014) Parameters estimation for the spherical model of the human knee joint using vector method. Int. J. Appl. Mech Engin. 19, 3. DOI: 10.2478/ijame-2014-0035.10.2478/ijame-2014-0035Search in Google Scholar

18. Hajduk, G., Nowak, K., Sobota, G., Kusz, D., Kopeć, K., Błaszczak, E., Cieliński, Ł. & Bacik, B. (2016). Kinematic gait parameters changes in patients after total knee arthroplasty: Comparison between cruciate-retaining and posterior-substituting design. Acta Bioengin. Biomech. 18, 3. DOI: 10.5277/ABB-00405-2015-03.Search in Google Scholar

19. Melzer, P., Głowacki, M., Głowacki, J. & Misterska, E. (2014) Isokinetic evaluation of knee joint flexor and extensor muscles after tibial eminence fractures, Acta Bioengin. Biomech. 16, 3. DOI: 10.5277/abb140313.Search in Google Scholar

20. https://www.linkorthopaedics.de, access 29.04.2019.Search in Google Scholar

21. Gierzyńska-Dolna, M. (1997). Tribological problems in natural and artificial human joint. Biomater. Engin. 2/1997.Search in Google Scholar

22. Long, M. & Rack H.J. (1998). Titanium alloys in total joint replacement – a materials science perspective. Biomaterials 19 (1998) 1621–1639.Search in Google Scholar

23. Zienkiewicz, O.C. (1972). Finite Elements Method. Publishing Arkady.Search in Google Scholar

24. Knapczyk, J. & Góra-Maniowska, M. (2017) Displacement analysis of the human knee joint based on the spatial kinematic model by using vector method, Acta Mech. Automat. 11, 4. DOI: 10.1515/ama-2017-0050.10.1515/ama-2017-0050Search in Google Scholar

25. https://www.zimmerbiomet.com, access 16.04.2018.Search in Google Scholar

26. Będziński, R. (1997) Biomechanika inżynierska, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław.Search in Google Scholar

27. Marciniak, J. (2002) Biomaterials, Gliwice, Publishing of Silesian University of Technology.Search in Google Scholar

28. Ratner, B.D. (2004). Biomaterials Science, An Introduction to Materials in Medicine 2nd Edittion, Elsevier Academic Press, eBook ISBN: 9780080470368.Search in Google Scholar

29. Bednarek, A., Zakrzewski, P. & Parol, W. (2008). Proteza nasadowa (modularna) stawu biodrowego Metha – założenia biomechaniczne, wczesne wyniki kliniczne, IV Międzynarodowe Sympozjum Koksartoza, 8 – 10.05.2008, Katowice.Search in Google Scholar

30. Kumar, A., Bijwe, J. & Sharma, S. (2017). Hard metal nitrides: Role in enhancing the abrasive wear resistance of UHMWPE, Wear 378–379, Pages 35–42. DOI: 10.1016/j. wear.2017.02.010.Search in Google Scholar

31. Cenna, A.A., Allen, S., Page, N.W & Dastoor, P. (2003). Modelling the three-body abrasive wear of UHMWPE particle reinforced composites, Wear 254, 5–6, Pages 581–588. DOI: 10.1016/S0043-1648(03)00067-X.10.1016/S0043-1648(03)00067-XSearch in Google Scholar

32. Zai, W., Wong, M.H. & Man, H.C. (2019). Improving the wear and corrosion resistance of CoCrMo-UHMWPE articulating surfaces in the presence of an electrolyte, Appl. Surf. Sci. 464, 404–411. DOI: 10.1016/j.apsusc.2018.09.027.10.1016/j.apsusc.2018.09.027Search in Google Scholar

eISSN:
1899-4741
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering