Acceso abierto

Solvent-free synthesis of 1-amidoalkyl-2-naphthol and 3-amino-1-phenyl-1H benzo[f]chromene-2-carbonitrile derivatives by Fe3O4@enamine-B(OSO3H)2 as an efficient and novel heterogeneous magnetic nanostructure catalyst


Cite

1. Abedinia, O., Zareinejad, M., Doranehgard, M.H., Fathi, G. & Ghadimi, N. (2019). Optimal offering and bidding strategies of renewable energy based large consumer using a novel hybrid robust-stochastic approach. J. Cleaner Prod. 215, 878–889. DOI: 10.1016/j.jclepro.2019.01.085.10.1016/j.jclepro.2019.01.085Search in Google Scholar

2. Bagal, H.A., Soltanabad, Y.N., Dadjuo, M., Wakil, K. & Ghadimi, N. (2018). Risk-assessment of photovoltaic-wind-battery-grid based large industrial consumer using information gap decision theory. Solar Energy 169, 343–352. DOI: 10.1016/j. solener.2018.05.003.Search in Google Scholar

3. Shao, M., Ning, F., Zhao, J., Wei, M., Evans, D.G. & Duan, X. (2012). Preparation of Fe3O4@ SiO2@ layered double hydroxide core–shell microspheres for magnetic separation of proteins. J. Amer. Chem. Soc. 134(2), 1071–1077. DOI: 10.1021/ja2086323.10.1021/ja208632322191643Search in Google Scholar

4. Deng, Y., Deng, C., Qi, D., Liu, C., Liu, J., Zhang, X. & Zhao, D. (2009). Synthesis of core/shell colloidal magnetic zeolite microspheres for the immobilization of trypsin. Adv. Mater. 21(13), 1377–1382. DOI: 10.1002/adma.200801766.10.1002/adma.200801766Search in Google Scholar

5. Mobaraki, A., Movassagh, B. & Karimi, B. (2014). Magnetic solid sulfonic acid decorated with hydrophobic regulators: A combinatorial and magnetically separable catalyst for the synthesis of α-aminonitriles. ACS Combin. Sci. 16(7), 352–358. DOI: 10.1021/co500022g.10.1021/co500022g24932543Search in Google Scholar

6. Safaei-Ghomi, J., Javidan, A., Ziarati, A. & Shahbazi-Alavi, H. (2015). Synthesis of new 2-amino-4H-pyran-3, 5-dicarboxylate derivatives using nanocrystalline M II Zr 4 (PO 4) 6 ceramics as reusable and robust catalysts under microwave irradiation. J. Nanopartic. Res. 17(8), 338. DOI: 10.1007/s11051-015-3142-y.10.1007/s11051-015-3142-ySearch in Google Scholar

7. Shylesh, S., Schünemann, V. & Thiel, W.R. (2010). Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis. Angew. Chemie Internat. Edit. 49(20), 3428–3459. DOI: 10.1002/anie.200905684.10.1002/anie.20090568420419718Search in Google Scholar

8. Tucker-Schwartz, A.K., Farrell, R.A. & Garrell, R.L. (2011). Thiol–ene click reaction as a general route to functional trialkoxysilanes for surface coating applications. J. Amer. Chem. Soc. 133(29), 11026–11029. DOI: 10.1021/ja202292q.10.1021/ja202292q21728292Search in Google Scholar

9. Sadeghzadeh, S.M. & Nasseri, M.A. (2013). Methylene dipyridine nanoparticles stabilized on Fe3O4 as catalysts for efficient, green, and one-pot synthesis of pyrazolophthalazinyl spirooxindoles. Catalysis Today 217, 80–85. DOI: 10.1016/j. cattod.2013.07.018.Search in Google Scholar

10. Vayssieres, L., Chanéac, C., Tronc, E. & Jolivet, J.P. (1998). Size tailoring of magnetite particles formed by aqueous precipitation: an example of thermodynamic stability of nanometric oxide particles. J. Colloid Inter. Sci. 205(2), 205–212. DOI: 10.1006/jcis.1998.5614.10.1006/jcis.1998.56149735184Search in Google Scholar

11. Hong, R.Y., Feng, B., Liu, G., Wang, S., Li, H.Z., Ding, J.M., ... & Wei, D.G. (2009). Preparation and characterization of Fe3O4/polystyrene composite particles via inverse emulsion polymerization. J. Alloys Comp. 476(1–2), 612–618. DOI: 10.1016/j.jallcom.2008.09.060.10.1016/j.jallcom.2008.09.060Search in Google Scholar

12. Rostamnia, S. & Doustkhah, E. (2015). Synthesis of water-dispersed magnetic nanoparticles (H2O-DMNPs) of β-cyclodextrin modified Fe3O4 and its catalytic application in Kabachnik–Fields multicomponent reaction. J. Magnet. Magnet. Mater. 386, 111–116. DOI: 10.1016/j.jmmm.2015.03.064.10.1016/j.jmmm.2015.03.064Search in Google Scholar

13. Rostamizadeh, S., Shadjou, N., Azad, M. & Jalali, N. (2012). (α-Fe2O3)-MCM-41 as a magnetically recoverable nanocatalyst for the synthesis of pyrazolo [4, 3-c] pyridines at room temperature. Catal. Commun. 26, 218–224. DOI: 10.1016/j.catcom.2012.05.022.10.1016/j.catcom.2012.05.022Search in Google Scholar

14. Zhang, F., Jin, J., Zhong, X., Li, S., Niu, J., Li, R. & Ma, J. (2011). Pd immobilized on amine-functionalized magnetite nanoparticles: a novel and highly active catalyst for hydrogenation and Heck reactions. Green Chem. 13(5), 1238–1243. DOI: 10.1039/C0GC00854K.10.1039/c0gc00854kSearch in Google Scholar

15. Berry, C.C., & Curtis, A.S. (2003). Functionalisation of magnetic nanoparticles for applications in biomedicine. J. Phys. D: Appl. Phys. 36(13), R198. DOI: 10.1088/0022-3727/36/13/203.10.1088/0022-3727/36/13/203Search in Google Scholar

16. Nasongkla, N., Bey, E., Ren, J., Ai, H., Khemtong, C., Guthi, J.S. & Gao, J. (2006). Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Letters 6(11), 2427–2430. DOI: 10.1021/nl061412u.10.1021/nl061412uSearch in Google Scholar

17. Arruebo, M., Fernández-Pacheco, R., Ibarra, M.R. & Santamaría, J. (2007). Magnetic nanoparticles for drug delivery. Nano Today 2(3), 22–32. DOI: 10.1016/S1748-0132(07)70084-1.10.1016/S1748-0132(07)70084-1Search in Google Scholar

18. Dobson, J. (2006). Magnetic nanoparticles for drug delivery. Drug Development Res. 67(1), 55–60. DOI: 10.1002/ddr.20067.10.1002/ddr.20067Search in Google Scholar

19. Lewin, M., Carlesso, N., Tung, C.H., Tang, X.W., Cory, D., Scadden, D.T. & Weissleder, R. (2000). Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nature Biotechnol. 18(4), 410. DOI: 10.1038/74464.10.1038/74464Search in Google Scholar

20. Govan, J. & Gun’ko, Y.K. (2014). Recent advances in the application of magnetic nanoparticles as a support for homogeneous catalysts. Nanomaterials, 4(2), 222–241. DOI: 10.3390/nano4020222.10.3390/nano4020222Search in Google Scholar

21. Shen, A.Y., Tsai, C.T. & Chen, C.L. (1999). Synthesis and cardiovascular evaluation of N-substituted 1-aminomethyl-2-naphthols. Europ. J. Med. Chem. 34(10), 877–882. DOI: 10.1016/S0223-5234(99)00204-4.10.1016/S0223-5234(99)00204-4Search in Google Scholar

22. Szatmari, I. & Fulop, F. (2004). Syntheses and transformations of 1-(α-aminobenzyl)-2-naphthol derivatives. Current Org. Synthesis 1(2), 155–165. DOI: 10.2174/1570179043485402.10.2174/1570179043485402Search in Google Scholar

23. Ansari, S.A.M.K., Sangshetti, J.N., Kokare, N.D., Wakte, P.S. & Shinde, D.B. (2010). Oxalic acid catalyzed solvent-free synthesis of α-amidoalkyl-β-naphthols. Ind. J. Chem. Technol. 17(1), 71–73.Search in Google Scholar

24. Das, B., Laxminarayana, K., Ravikanth, B. & Rao, B.R. (2007). Iodine catalyzed preparation of amidoalkyl naphthols in solution and under solvent-free conditions. J. Molec. Catal. A: Chem. 261(2), 180–183. DOI: 10.1016/j.molcata.2006.07.077.10.1016/j.molcata.2006.07.077Search in Google Scholar

25. Patil, S.B., Singh, P.R., Surpur, M.P., & Samant, S.D. (2007). Cation-Exchanged Resins: Efficient Heterogeneous Catalysts for Facile Synthesis of 1-Amidoalkyl-2-naphthols from One-Pot, Three-Component Condensations of Amides/Ureas, Aldehydes, and 2-Naphthol. Synt. Commun. 37(10), 1659–1664.10.1080/00397910701263858Search in Google Scholar

26. Chavan, N.L., Naik, P.N., Nayak, S.K. & Kusurkar, R.S. (2010). Indium (III) chloride: an efficient catalyst for the synthesis of amidoalkyl naphthols. Synt. Commun. 40(19), 2941–2947. DOI: 10.1080/00397910903340702.10.1080/00397910903340702Search in Google Scholar

27. Patil, S.B., Singh, P.R., Surpur, M.P. & Samant, S.D. (2007). Ultrasound-promoted synthesis of 1-amidoalkyl-2-naphthols via a three-component condensation of 2-naphthol, ureas/amides, and aldehydes, catalyzed by sulfamic acid under ambient conditions. Ultrasonics Sonochem. 14(5), 515–518. DOI: 10.1016/j.ultsonch.2006.09.006.10.1016/j.ultsonch.2006.09.00617145194Search in Google Scholar

28. Nagarapu, L., Baseeruddin, M., Apuri, S. & Kantevari, S. (2007). Potassium dodecatungstocobaltate trihydrate (K5CoW12O40· 3H2O): A mild and efficient reusable catalyst for the synthesis of amidoalkyl naphthols in solution and under solvent-free conditions. Catal. Commun. 8(11), 1729–1734. DOI: 10.1016/j.catcom.2007.02.008.10.1016/j.catcom.2007.02.008Search in Google Scholar

29. Arundhathi, K., Sudhakar, K., Sastry, B.S. & Yadav, J.S. (2010). A novel three-component one-pot reaction involving β-naphthol, aldehydes, and urea promoted by TMSCl/NaI. DOI: 10.1002/jhet.328.10.1002/jhet.328Search in Google Scholar

30. Shaterian, H.R., Yarahmadi, H. & Ghashang, M. (2008). An efficient, simple and expedition synthesis of 1-amidoalkyl-2-naphthols as ‘drug like’molecules for biological screening. Bioorg. & Med. Chem. Letters 18(2), 788–792. DOI: 10.1016/j. bmcl.2007.11.035.Search in Google Scholar

31. Kumar, A., Rao, M.S., Ahmad, I. & Khungar, B. (2009). A simple and facile synthesis of amidoalkyl naphthols catalyzed by Yb (OTf) 3 in ionic liquids. Canad. J. Chem. 87(6), 714–719. DOI: 10.1139/V09-049.10.1139/V09-049Search in Google Scholar

32. Khodaei, M.M., Khosropour, A.R. & Moghanian, H. Synlett., 2006, 132, 916.10.1055/s-2006-939034Search in Google Scholar

33. Zhang, P. & Zhang, Z.H. (2009). Preparation of amidoalkyl naphthols by a three-component reaction catalyzed by 2, 4, 6-trichloro-1, 3, 5-triazine under solvent-free conditions. Monatshefte für Chem.- Chem. Monthly 140(2), 199. DOI: 10.1007/s00706-008-0059-5.10.1007/s00706-008-0059-5Search in Google Scholar

34. Jiang, W.Q., An, L.T., & Zou, J.P. (2008). Molybdophosphoric Acid: An Efficient Keggin-type Heteropoloacid Catalyst for the One-pot Three-Component Synthesis of 1-Amidoalkyl-2-naphthols. Chin. J. Chem. 26(9), 1697–1701. DOI: 10.1002/cjoc.200890307.10.1002/cjoc.200890307Search in Google Scholar

35. Su, W.K., Tang, W.Y. & Li, J.J. (2008). Strontium(II) triflate catalysed condensation of β-naphthol, aldehyde and urea or amides: a facile synthesis of amidoalkyl naphthols. Chem. Res. 123–128. DOI: 10.3184/030823408X298508.10.3184/030823408X298508Search in Google Scholar

36. Kantevari, S., Vuppalapati, S.V. & Nagarapu, L. (2007). Montmorillonite K10 catalyzed efficient synthesis of amidoalkyl naphthols under solvent free conditions. Catalysis Communications 8(11), 1857–1862. DOI: 10.1016/j.catcom.2007.02.022.10.1016/j.catcom.2007.02.022Search in Google Scholar

37. Khafagy, M.M., El-Wahab, A.H.A., Eid, F.A. & El-Agrody, A.M. (2002). Synthesis of halogen derivatives of benzo [h] chromene and benzo [a] anthracene with promising antimicrobial activities. Il Farmaco 57(9), 715–722. DOI: 10.1016/S0014-827X(02)01263-6.10.1016/S0014-827X(02)01263-6Search in Google Scholar

38. Jeso, V. & Nicolaou, K.C. (2009). Total synthesis of tovophyllin B. Tetrahedron letters 50(11), 1161–1163. DOI: 10.1016/j.tetlet.2008.12.096.10.1016/j.tetlet.2008.12.096Search in Google Scholar

39. Skommer, J., Wlodkowic, D., Mättö, M., Eray, M. & Pelkonen, J. (2006). HA14-1, a small molecule Bcl-2 antagonist, induces apoptosis and modulates action of selected anticancer drugs in follicular lymphoma B cells. Leukemia Res. 30(3), 322–331. DOI: 10.1016/j.leukres.2005.08.022.10.1016/j.leukres.2005.08.022Search in Google Scholar

40. Mohr, S.J. (1975). Chirigos. MA, Fuhrman, FS, and Pryor, JW Pyran Copolymer as an Effective Adjuvant to Chemotherapy against a Murine Leukemia and Solid Tumor. Cancer Res. 35, 3750–3754.Search in Google Scholar

41. Wang, J.L., Liu, D., Zhang, Z.J., Shan, S., Han, X., Srinivasula, S.M., ... & Huang, Z. (2000). Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proceed. Nat. Acad. Sci. 97(13), 7124–7129. DOI: 10.1073/pnas.97.13.7124.10.1073/pnas.97.13.7124Search in Google Scholar

42. Martínez-Grau, A., & Marco, J. (1997). Friedländer reaction on 2-amino-3-cyano-4H-pyrans: Synthesis of derivatives of 4H-pyran [2, 3-b] quinoline, new tacrine analogues. Bioorg. & Medic. Chem. Letters 7(24), 3165–3170. DOI: 10.1016/S0960-894X(97)10165-2.10.1016/S0960-894X(97)10165-2Search in Google Scholar

43. Smith, P.W., Sollis, S.L., Howes, P.D., Cherry, P.C., Starkey, I.D., Cobley, K.N., ... & Wyatt, P. (1998). Dihydropyrancarboxamides related to zanamivir: A new series of inhibitors of influenza virus sialidases. 1. Discovery, synthesis, biological activity, and structure− activity relationships of 4-guanidinoand 4-amino-4 H-pyran-6-carboxamides. J. Med. Chem. 41(6), 787–797. DOI: 10.1021/jm970374b.10.1021/jm970374b9526555Search in Google Scholar

44. Kidwai, M., Saxena, S., Khan, M.K.R. & Thukral, S.S. (2005). Aqua mediated synthesis of substituted 2-amino-4H-chromenes and in vitro study as antibacterial agents. Bioorg. & Med. Chem. Letters 15(19), 4295–4298. DOI:10.1016/j. bmcl.2005.06.041.Search in Google Scholar

45. Eiden, F. & Denk, F. (1991). Synthesis of CNS-activity of pyran derivatives: 6, 8-dioxabicyclo (3, 2, 1) octane. Arch. Pharm. 324(6), 353–354. DOI: 10.1002/ardp.19913240606.10.1002/ardp.199132406061763946Search in Google Scholar

46. Albadi, J., Razeghi, A., Mansournezhad, A. & Azarian, Z. (2013). CuO-CeO 2 nanocomposite catalyzed efficient synthesis of aminochromenes. J. Nanostr. Chem. 3(1), 85.10.1186/2193-8865-3-85Search in Google Scholar

47. Rao, M.S., Chhikara, B.S., Tiwari, R., Shirazi, A.N., Parang, K. & Kumar, A. (2012). A greener synthesis of 2-aminochromenes in ionic liquid and evaluation of their antiproliferative activities.Search in Google Scholar

48. Gong, K., Wang, H.L., Fang, D. & Liu, Z.L. (2008). Basic ionic liquid as catalyst for the rapid and green synthesis of substituted 2-amino-2-chromenes in aqueous media. Catal. Commun. 9(5), 650–653. DOI: 10.1016/j.catcom.2007.07.010.10.1016/j.catcom.2007.07.010Search in Google Scholar

49. Abdolmohammadi, S., Afsharpour, M. & Keshavarz-Fatideh, S. (2014). An Efficient Green Synthesis of 3-Amino-1 H-chromenes Catalyzed by ZnO Nanoparticles Thin-film. South Afric. J. Chem. 67(1), 203–210.Search in Google Scholar

50. El-Maghraby, A.M. (2014). Green chemistry: new synthesis of substituted chromenes and benzochromenes via three-component reaction utilizing Rochelle salt as novel green catalyst. Org. Chem. Internat. DOI: 10.1155/2014/715091.10.1155/2014/715091Search in Google Scholar

51. Balalaie, S., Ramezanpour, S., Bararjanian, M. & Gross, J.H. (2008). DABCO-catalyzed efficient synthesis of naphthopyran derivatives via One-Pot three-component condensation reaction at room temperature. Synt. Commun. 38(7), 1078–1089. DOI: 10.1080/00397910701862865.10.1080/00397910701862865Search in Google Scholar

52. Wang, M., Zhang, T.T., Liang, Y. & Gao, J.J. (2012). Efficient synthesis of mono-and disubstituted 2, 3-dihydroquinazolin-4 (1H)-ones using copper benzenesulfonate as a reusable catalyst in aqueous solution. Monatshefte für Chem.-Chem. Monthly 143(5), 835–839. DOI: 10.1007/s00706-011-0648-6.10.1007/s00706-011-0648-6Search in Google Scholar

53. Hajipour, A.R., Ghayeb, Y., Sheikhan, N. & Ruoho, A.E. (2009). Brønsted acidic ionic liquid as an efficient and reusable catalyst for one-pot synthesis of 1-amidoalkyl 2-naphthols under solvent-free conditions. Tetrahedron Letters 50(40), 5649–5651. DOI: 10.1016/j.tetlet.2009.07.116.10.1016/j.tetlet.2009.07.116Search in Google Scholar

54. Selvam, N.P. & Perumal, P.T. (2006). A new synthesis of acetamido phenols promoted by Ce (SO4) 2. Tetrahedron Letters 47(42), 7481–7483. DOI: 10.1016/j.tetlet.2006.08.038.10.1016/j.tetlet.2006.08.038Search in Google Scholar

55. Nandi, G.C., Samai, S., Kumar, R. & Singh, M.S. (2009). Atom-efficient and environment-friendly multicomponent synthesis of amidoalkyl naphthols catalyzed by P2O5. Tetrahedron Letters 50(51), 7220–7222. DOI: 10.1016/j.tetlet.2009.10.055.10.1016/j.tetlet.2009.10.055Search in Google Scholar

56. Shaterian, H.R., Yarahmadi, H. & Ghashang, M. (2008). Silica supported perchloric acid (HClO4–SiO2): an efficient and recyclable heterogeneous catalyst for the one-pot synthesis of amidoalkyl naphthols. Tetrahedron 64(7), 1263–1269. DOI: 10.1016/j.tet.2007.11.070.10.1016/j.tet.2007.11.070Search in Google Scholar

57. Luo, J. & Zhang, Q. (2011). A one-pot multicomponent reaction for synthesis of 1-amidoalkyl-2-naphthols catalyzed by PEG-based dicationic acidic ionic liquids under solvent-free conditions. Monatshefte für Chem.-Chem. Monthly 142(9), 923. DOI: 10.1007/s00706-011-0522-6.10.1007/s00706-011-0522-6Search in Google Scholar

58. Ghorbani-Vaghei, R. & Malaekehpour, S.M. (2010). Efficient and solvent-free synthesis of 1-amidoalkyl-2-naphthols using N, N, N’, N’-tetrabromobenzene-1, 3-disulfonamide. Central Europ. J. Chem. 8(5), 1086–1089. DOI: 10.2478/s11532-010-0077-0.10.2478/s11532-010-0077-0Search in Google Scholar

59. Moosavi-Zare, A.R., Zolfigol, M.A., Khaledian, O., Khakyzadeh, V., Beyzavi, M.H. & Kruger, H.G. (2014). Tandem Knoevenagel–Michael–cyclocondensation reaction of malononitrile, various aldehydes and 2-naphthol over acetic acid functionalized ionic liquid. Chem. Engin. J. 248, 122–127. DOI: 10.1016/j.cej.2014.03.035.10.1016/j.cej.2014.03.035Search in Google Scholar

60. Dekamin, M.G., Eslami, M. & Maleki, A. (2013). Potassium phthalimide-N-oxyl: a novel, efficient, and simple organocatalyst for the one-pot three-component synthesis of various 2-amino-4H-chromene derivatives in water. Tetrahedron 69(3), 1074–1085. DOI: 10.1016/j.tet.2012.11.068.10.1016/j.tet.2012.11.068Search in Google Scholar

61. Nabinia, N., Shirini, F., Tajik, H., Mashhadinezhad, M. & Langarudi, M.S.N. (2018). An affordable DABCO-based ionic liquid efficiency in the synthesis of 3-amino-1-aryl-1H-benzo [f] chromene-2-carbonitrile, 1-(benzothiazolylamino) phenylmethyl-2-naphthol, and 1-(benzoimidazolylamino) phenylmethyl-2-naphthol derivatives. J. Iranian Chem. Soc. 15(9), 2147–2157. DOI: 10.1007/s13738-018-1408-x.10.1007/s13738-018-1408-xSearch in Google Scholar

62. Behbahani, F.K. & Maryam, S. (2013). On Water CuSO 4. 5H 2 O-catalyzed Synthesis of 2-amino-4H-chromenes. J. Korean Chem. Soc. 57(3), 357–360.Search in Google Scholar

63. Sadeghi, B. & Zarepour, I. (2015). Nano-sawdust–BF 3 as a new, cheap, and effective nano catalyst for one-pot synthesis of 2-amino benzo [h] chromene derivatives. J. Nanostruc. Chem. 5(3), 305–311. DOI: 10.1007/s40097-015-0162-1.10.1007/s40097-015-0162-1Search in Google Scholar

64. Akandi, A.S., Balali, E., Mosavat, T., Ghanbari, M.M. & Eazabadi, A. (2014). The One-Step Synthesis of 3, 4-Dihydropyrano [F] Chromene Derivatives in Under Grinding as an Environmentally Friendly Alternative. Oriental J. Chem. 30(2). DOI: 10.13005/ojc/300225.10.13005/ojc/300225Search in Google Scholar

65. Cai, X.H., Guo, H. & Xie, B. (2011). One-pot multi-component synthesis of amidoalkyl naphthols with potassium hydrogen sulfate as catalyst under solvent-free condition. Jordan J. Chem. 146(602), 1–4.Search in Google Scholar

66. Hazeri, N., Maghsoodlou, M.T., Habii-Khorassani, S.M., Aboonajmi, J. & Safarzei, M. (2013). A green protocol for one-pot three-component synthesis of amidoalkyl naphthols catalyzed by succinic acid. Chem. Sci. Transac. 2(S1), S330–S336. DOI: 10.7598/cst2013.426.10.7598/cst2013.426Search in Google Scholar

67. Chinna Ashalua, K. & Nageshwar Rao, J. (2013). MgSO4 catalyzed one-pot multi-component reaction: Synthesis of amidoalkyl naphthols. J. Chem. Pharm. Res. 5, 44.Search in Google Scholar

68. Taghrir, H., Ghashang, M. & Biregan, M.N. (2016). Preparation of 1-amidoalkyl-2-naphthol derivatives using barium phosphate nano-powders. Chin. Chem. Letters 27(1), 119–126. DOI: 10.1016/j.cclet.2015.08.011.10.1016/j.cclet.2015.08.011Search in Google Scholar

69. Zolfigol, M.A., Baghery, S., Moosavi-Zare, A.R., Vahdat, S.M., Alinezhad, H. & Norouzi, M. (2015). Design of 1-methylimidazolium tricyanomethanide as the first nanostructured molten salt and its catalytic application in the condensation reaction of various aromatic aldehydes, amides and β-naphthol compared with tin dioxide nanoparticles. RSC Adv. 5(56), 45027–45037. DOI: 10.1039/C5RA02718G.10.1039/C5RA02718GSearch in Google Scholar

70. Heravi, M.M., Hosseinnejad, T., Faghihi, Z., Shiri, M., & Vazinfard, M. (2017). Synthesis of 2-amino-3-cyano 4-H-chromenes containing quinoline in water: computational study on substituent effects. J. Iranian Chem. Soc. 14(4), 823–832. DOI: 10.1007/s13738-016-1032-6.10.1007/s13738-016-1032-6Search in Google Scholar

71. Eshghi, H., Damavandi, S. & Zohuri, G.H. (2011).One pot synthesis of pyran-based heterocycles from benzyl halides as key reagents. Inorg. Met. Org. NanoMet. Chem. 41, 1067.10.1080/15533174.2011.591347Search in Google Scholar

72. Baghbanian, S.M., Rezaei, N., & Tashakkorian, H. (2013). Nanozeolite clinoptilolite as a highly efficient heterogeneous catalyst for the synthesis of various 2-amino-4 H-chromene derivatives in aqueous media. Green Chem. 15(12), 3446–3458. DOI: 10.1039/C3GC41302K.10.1039/c3gc41302kSearch in Google Scholar

73. Heravi, M.M., Baghernejad, B. & Oskooie, H.A. (2008). A Novel and Efficient Catalyst to One-Pot Synthesis of 2-Amino-4H-Chromenes by Methanesulfonic. Acid. J. Chin. Chem. Soc. 55(3), 659–662. DOI: 10.1002/jccs.200800098.10.1002/jccs.200800098Search in Google Scholar

eISSN:
1899-4741
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering