Acceso abierto

Lignocellulosic fraction of the pericarps of the acorns of Quercus suber and Quercus ilex: isolation, characterization, and biosorption studies in the removal of copper from aqueous solutions


Cite

1. Afroze, S. & Sen, T.K. (2018). A review on heavy metal ions and dye adsorption from water by agricultural solid waste adsorbents. Water Air Soil Pollut. 229, 225. DOI: 10.1007/s11270-018-3869-z.10.1007/s11270-018-3869-zOpen DOISearch in Google Scholar

2. Amuda, O.S., Amoo, I.A., Ipinmoroti, K.O. & Ajayi, O.O.(2006). Coagulation/flocculation process in the removal of trace metals present in industrial wastewater. J. Appl. Sci. Environ. Manage.10(3), 159–162. DOI: 10.4314/jasem.v10i3.17339.10.4314/jasem.v10i3.17339Open DOISearch in Google Scholar

3. Wang, J.L. & Xu, L.J. (2012). Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application. Crit. Rev. Environ. Sci. Technol. 42, 251–325. DOI: 10.1080/10643389.2010.507698.10.1080/10643389.2010.507698Open DOISearch in Google Scholar

4. Rivas, B.L. & Palencia, M. (2011). Removal-concentration of pollutant metal-ions by water-soluble polymers in conjunction with double emulsion systems: A new hybrid method of membrane-based separation. Sep. Purif. Technol. 81(3), 435–443. DOI: 10.1016/j.seppur.2011.08.021.10.1016/j.seppur.2011.08.021Open DOISearch in Google Scholar

5. Saleh, T.A. & Gupta, V.K. (2014). Processing methods, characteristics and adsorption behavior of tire derived carbons: A review. Adv. Colloid. Interface Sci. 211, 93–101. DOI: 10.1016/j.cis.2014.06.006.10.1016/j.cis.2014.06.006Open DOISearch in Google Scholar

6. Rubio, J., Souza, M.L. & Smith, R.W. (2002). Overview of flotation as a wastewater treatment technique. Miner. Eng. 15(3), 139–155. DOI: 10.1016/S0892-6875(01)00216-3.10.1016/S0892-6875(01)00216-3Open DOISearch in Google Scholar

7. Agwaramgbo, L., Magee, N., Nunez, S. & Mitt, K. (2013). Biosorption and chemical precipitation of lead using biomaterials, molecular sieves, and chlorides, carbonates, and sulfates of Na & Ca. J. Environ. Prot. 4(11), 1251–1257. DOI: 10.4236/jep.2013.411145.10.4236/jep.2013.411145Open DOISearch in Google Scholar

8. Gähr, F., Hermanutz, F. & Oppermann, W. (1994). Ozonation-an important technique to comply with new German laws for textile wastewater treatment. Water Sci. Technol. 30(3), 255–263. DOI: 10.2166/wst.1994.0115.10.2166/wst.1994.0115Search in Google Scholar

9. Abdel-Aziz, M.H., Nirdosh, I. & Sedahmed, G.H. (2013). Ion-exchange-assisted electrochemical removal of heavy metals from dilute solutions in a stirred-tank electrochemical reactor: a mass-transfer study. Ind. Eng. Chem. Res. 52(33), 11655–11662. DOI: 10.1021/ie400548w.10.1021/ie400548wOpen DOISearch in Google Scholar

10. Dean, J.G., Bosqui, F.L. & Lanouette, K.H. (1972). Removing heavy metals from waste water. Environ. Sci. Technol. 6(6), 518–522. DOI: 10.1021/es60065a006.10.1021/es60065a006Search in Google Scholar

11. Lin, S.H. & Juang, R.S. (2002). Removal of free and chelated Cu (II) ions from water by a nondispersive solvent extraction process. Water Res. 36, 3611–3619. DOI: 10.1016/S0043-1354(02)00074-X.10.1016/S0043-1354(02)00074-XOpen DOISearch in Google Scholar

12. Tao, H.C., Lei, T., Shi, G., Sun, X.N., Wei, X.Y., Zhang, L.J. & Wu, W.M.(2014). Removal of heavy metals from fly ash leachate using combined bioelectrochemical systems and electrolysis. J. Hazard. Mater. 264, 1–7. DOI: 10.1016/j.jhazmat.2013.10.057.10.1016/j.jhazmat.2013.10.057Open DOISearch in Google Scholar

13. Sreeprasad, T.S., Maliyekkal, S. M., Lisha, K.P. & Pradeep, T. (2011). Reduced graphene oxide–metal/metal oxide composites: facile synthesis and application in water purification. J. Hazard. Mater. 186(1), 921–931. DOI: 10.1016/j.jhazmat.2010.11.100.10.1016/j.jhazmat.2010.11.100Open DOISearch in Google Scholar

14. Nielsen, P.B., Christensen, T.C. & Vendrup, M. (1997). Continuous removal of heavy metals from FGD wastewater in a fluidised bed without sludge generation. Water Sci. Technol. 36(2–3), 391–397. DOI: 10.1016/S0273-1223(97)00413-7.10.1016/S0273-1223(97)00413-7Open DOISearch in Google Scholar

15. Ahluwalia, S.S. & Dinesh, G. (2007). Microbial and plant derived biomass for removal of heavy metals from wastewater. Biores.Technol. 98(12), 2243–2257. DOI: 10.1016/j.biortech.2005.12.006.10.1016/j.biortech.2005.12.006Open DOISearch in Google Scholar

16. Bailey, S.E., Olin, T.J., Bricka, R.M. & Adrian, D. D. (1999). A review of potentially low-cost sorbents for heavy metals. Water Res. 33 (11),2469–2479. DOI: 10.1016/S0043-1354(98)00475-8.10.1016/S0043-1354(98)00475-8Open DOISearch in Google Scholar

17. Mohan, D., Sarswat, A., Ok, Y.S., & Pittman, C.U. (2014). Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent – a critical review. Biores. Technol. 160, 191–202. DOI: 10.1016/j.biortech.2014.01.120.10.1016/j.biortech.2014.01.12024636918Open DOISearch in Google Scholar

18. Vikrant, K., Giri, B.S., Raza, N., Roy, K., Kim, K.H., Rai, B.N., & Singh, R.S. (2018). Recent advancements in bioremediation of dye: current status and challenges. Biores. Technol. 253, 355–367. DOI: 10.1016/j.biortech.2018.01.029.10.1016/j.biortech.2018.01.02929352640Open DOISearch in Google Scholar

19. Robati, D., Mirza, B., Rajabi, M., Moradi, O., Tyagi, I., Agarwal, S. & Gupta, V.K., (2016). Removal of hazardous dyes-BR 12 and methyl orange using graphene oxide as an adsorbent from aqueous phase. Chem. Eng. J. 284, 687–697. DOI: 10.1016/j.cej.2015.08.131.10.1016/j.cej.2015.08.131Open DOISearch in Google Scholar

20. Gupta, V.K., Nayak, A., Agarwal, S. & Tyagi, I. (2014). Potential of activated carbon from waste rubber tire for the adsorption of phenolics: effect of pre-treatment conditions. J. Colloid. Interface Sci. 417, 420–430. DOI: 10.1016/j.jcis.2013.11.067.10.1016/j.jcis.2013.11.06724407705Open DOISearch in Google Scholar

21. Barka, N., Abdennouri, M., El-Makhfouk, M. & Qoursal S. (2013). Biosorption characteristics of cadmium and lead onto eco-friendly dried cactus (Opuntia ficus indica) cladodes. J. Environ. Chem. Eng. 1(3), 144–149. DOI: 10.1016/j.jece.2013.04.008.10.1016/j.jece.2013.04.008Open DOISearch in Google Scholar

22. Gupta, V.K. & Rastogi, A. (2008). Biosorption of lead from aqueous solutions by green algae Spirogyraspecies: kinetics and equilibrium studies. J. Hazard. Mater. 2008;152(1), 407–414. DOI: 10.1016/j.jhazmat.2007.07.028.10.1016/j.jhazmat.2007.07.02817716814Open DOISearch in Google Scholar

23. Afroze, S. & Sen, T.K. (2018). A review on heavy metal ions and dye adsorption from water by agricultural solid waste adsorbents. Water Air Soil Pollut. 229(7), 225. DOI: 10.1007/s11270-018-3869-z.10.1007/s11270-018-3869-zOpen DOISearch in Google Scholar

24. Gupta, V.K. & Saleh, T.A. (2013). Sorption of pollutants by porous carbon, carbon nanotubes and fullerene-an overview. Environ. Sci. Pollut. Res. 20(5), 2828–2843. DOI: 10.1007/s11356-013-1524-1.10.1007/s11356-013-1524-123430732Open DOISearch in Google Scholar

25. Ahmaruzzaman, M. & Gupta, V. K. (2011). Rice husk and its ash as low-cost adsorbents in water and wastewater treatment. Ind. Eng. Chem. Res. 50(24), 13589–13613. DOI: 10.1021/ie201477c.10.1021/ie201477cOpen DOISearch in Google Scholar

26. Hao, X., Mohamad, O.A., Xie, P., Rensing, C. & Wei, G. (2014). Removal of zinc from aqueous solution by metal resistant symbiotic bacterium Mesorhizobium amorphae. Separ. Sci. Technol. 49(3), 376–387. DOI: 10.1080/01496395.2013.843195.10.1080/01496395.2013.843195Open DOISearch in Google Scholar

27. Jakóbik-Kolon, A., Mitko, K. & Bok-Badura, J. (2017). Zinc sorption studies on pectin-based biosorbents. Materials 10(7), 844. DOI: 10.3390/ma10070844.10.3390/10070844Open DOISearch in Google Scholar

28. Haroon, H., Gardazi, S.M.H., Butt, T.A., Pervez, A., Mahmood, Q. & Bilal, M. (2017). Novel lignocellulosic wastes for comparative adsorption of Cr(VI): equilibrium kinetics and thermodynamic studies. Pol. J. Chem. Technol. 19(2),6–15. DOI: 10.1515/pjct-2017-0021.10.1515/pjct-2017-0021Open DOISearch in Google Scholar

29. Marchetti, V., Clément, A., Gérardin, P. & Loubinoux, B. (2000). Synthesis and use of esterified sawdusts bearing carboxyl group for removal of cadmium(II) from water. Wood Sci.Technol. 34(2), 167–173. DOI: 10.1007/s002260000040.10.1007/s002260000040Open DOISearch in Google Scholar

30. Hachem, K., Astier, C., Chaleix, V., Faugeron, C., Krausz, P., Kaid-Harche, M. & Gloaguen, V. (2012). Optimization of lead and cadmium binding by oxidation of biosorbent polysaccharidic moieties. Water Air Soil Pollut. 223(7), 3877–3885. DOI: 10.1007/s11270-012-1156-y.10.1007/s11270-012-1156-yOpen DOISearch in Google Scholar

31. Genevois, N., Villandier, N., Chaleix, V., Poli, E., Jauberty, L. & Gloaguen, V. (2017). Removal of cesium ion from contaminated water: improvement of Douglas fir bark biosorption by a combination of nickel hexacyanoferrate impregnation and TEMPO oxidation. Ecol. Eng. 100, 186–193. DOI: 10.1016/j.ecoleng.2016.12.012.10.1016/j.ecoleng.2016.12.012Open DOISearch in Google Scholar

32. Astier, C., Chaleix, V., Faugeron, C., Ropartz, D., Gloaguen, V. & Krausz, P. (2010). Grafting of aminated oligogalacturonans onto Douglas fir barks. a new route for the enhancement of their lead(II) binding capacities. J. Hazard. Mater. 182(1), 279–285. DOI: 10.1016/j.jhazmat.2010.06.027.10.1016/j.jhazmat.2010.06.027Open DOISearch in Google Scholar

33. Yeo, T.H.C., Tan, I.A.W. & Abdullah, M.O. (2012). Development of adsorption air-conditioning technology using modified activated carbon – A review. Renew. Sustain. Energy. Rev. 16(5), 3355–3363. DOI: 10.1016/j.rser.2012.02.073.10.1016/j.rser.2012.02.073Open DOISearch in Google Scholar

34. Nebagha, K.C., Ziat, K., Rghioui, L., Khayet, M., Saidi, M., Aboumaria, K., El Hourch, A. & Sebti, S. (2015). Adsorptive removal of copper (II) from aqueous solutions using low-cost Moroccan adsorbent. Part I: parameters influencing Cu (II) adsorption. J. Mater. Environ. Sci. 6(11), 3022–3033.Search in Google Scholar

35. Li, Y., Xia, B., Zhao, Q., Liu, F., Zhang, P., Du, Q., Wang, D., Li, D., Wang, Z. & Xia, Y.(2011). Removal of copper ions from aqueous solution by calcium alginate immobilized kaolin. J. Environ. Sci. 23(3), 404–411. DOI: 10.1016/S1001-0742(10)60442-1.10.1016/S1001-0742(10)60442-1Open DOISearch in Google Scholar

36. Bailey, R.W. (1967). Quantitative studies of ruminant digestion. NZ J. Agric. Res. 10(1):15–32. DOI: 10.1080/00288233.1967.10423074.10.1080/00288233.1967.10423074Open DOISearch in Google Scholar

37. Carpita, N.C. (1984). Fractionation of hemicelluloses from maize cell walls with increasing concentrations of alkali. Phytochemistry 23(5), 1089–1093. DOI: 10.1016/s0031-9422(00)82615-110.1016/S0031-9422(00)82615-1Search in Google Scholar

38. Mehlig, J. (1941). Colorimetric determination of copper with ammonia. Ind. Eng. Chem. Anal. Ed. 13(8), 533–535. DOI: 10.1021/i560096a006.10.1021/i560096a006Search in Google Scholar

39. Hameed, B.H., Mahmoud, D.K. & Ahmad, A.L. (2008). Equilibrium modeling and kinetic studies on the adsorption of basic dye by a low-cost adsorbent: coconut (Cocos nucifera) bunch waste. J. Hazard Mater. 158(1), 65–72. DOI: 10.1016/j.jhazmat.2008.01.034.10.1016/j.jhazmat.2008.01.03418308467Open DOISearch in Google Scholar

40. Dawczynski, C., Schubert, R. & Jahreis, G. (2007). Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chem. 103(3), 891–899. DOI: 10.1016/j.food-chem.2006.09.041.10.1016/j.food-chem.2006.09.041Open DOISearch in Google Scholar

41. El Gamal, A.A. (2010). Biological importance of marine algae. Saudi Pharmaceut. J. 18(1), 1–25. DOI: 10.1016/j.jsps.2009.12.001.10.1016/j.jsps.2009.12.001373101423960716Open DOISearch in Google Scholar

42. Proctor, M.C.F. (2000). The bryophyte paradox: tolerance of desiccation, evasion of drought. Plant Ecol. 151(1), 41–49. DOI: 10.1023/A:1026517920852.10.1023/A:1026517920852Open DOISearch in Google Scholar

43. Yargıç, A. Ş., Yarbay Şahin, R. Z., Özbay, N., & Önal, E. (2015). Assessment of toxic copper(II) biosorption from aqueous solution by chemically-treated tomato waste(Solanum lycopersicum). J. Clean. Prod. 88, 152–159. DOI: 10.1016/j.jclepro.2014.05.087.10.1016/j.jclepro.2014.05.087Open DOISearch in Google Scholar

44. Vafakhah, S., Bahrololoom, M. & Saeedikhani, M. (2016). Adsorption kinetics of cupric ions on mixture of modified corn stalk and modified tomato waste. J. Water Res. Prot. 8(13), 1238–1250. DOI: 10.4236/jwarp.2016.813095.10.4236/jwarp.2016.813095Open DOISearch in Google Scholar

45. Reddad, Z., Gerente, C., Andres, Y. & Le Cloirec, P. (2002). Adsorption of several metal ions onto a low-cost biosorbent: kinetic and equilibrium studies. Environ. Sci. Technol. 36(9), 2067–2073. DOI: 10.1021/es0102989.10.1021/es010298912026994Open DOISearch in Google Scholar

46. Moreira, V.R., Lebron, Y.A.R., Freire, S.J., Santos, L.V.S., Palladino, F., Jacob, R.S. (2019). Biosorption of copper ions from aqueous solution using Chlorella pyrenoidosa: Optimization, equilibrium and kinetics studies. Microchem. J. 145, 119–129. DOI: 10.1016/j.microc.2018.10.027.10.1016/j.microc.2018.10.027Open DOISearch in Google Scholar

47. Lacerda, E.C.M., dos Passos Galluzzi Baltazar, M., dos Reis, T.A., do Nascimento, C.A.O., Côrrea, B., Gimenes, L.J. (2019). Copper biosorption from an aqueous solution by the dead biomass of Penicillium ochrochloron. Environ. Monit. Assess. 191, 247. DOI: 10.1007/s10661-019-7399-y.10.1007/s10661-019-7399-y30919116Open DOISearch in Google Scholar

48. Mokkapati, R.P., Mokkapati, J. & Ratnakaram, V.N. (2016). Kinetic, isotherm and thermodynamics investigation on adsorption of divalent copper using agro-waste biomaterials, Musa acuminata, Casuarina equisetifolia L. and Sorghum bicolor. Pol. J. Chem. Technol. 18, 68–77. DOI: 10.1515/pjct-2016-0031.10.1515/pjct-2016-0031Open DOISearch in Google Scholar

49. Calero, M., Blázquez, G., Dionisio-Ruiz, E., Ronda, A. & Martín-Lara, M.A.(2013). Evaluation of biosorption of copper ions onto pinion shell. Desalination Water Treat. 51, 2411–2422. DOI: 10.1080/19443994.2012.747472.10.1080/19443994.2012.747472Open DOISearch in Google Scholar

50. Faix, O. (1992). Fourier transform infrared spectroscopy. In S.Y. Lin & C.W. Dence(eds.),Methods in lignin chemistry (pp. 233-241). Berlin, Heidelberg: Springer Berlin Heidelberg. DOI: 10.1007/978-3-642-74065-7_16.10.1007/978-3-642-74065-7_16Open DOISearch in Google Scholar

51. Collier, W.E., Schultz, T.P. & Kalasinsky, V.F. (1992). Infrared study of lignin: reexamination of aryl-alkyl ether C—O stretching peak assignments. Holzforschung 46(6), 523–528. DOI: 10.1515/hfsg.1992.46.6.523.10.1515/hfsg.1992.46.6.523Open DOISearch in Google Scholar

52. Ramavandi, B. & Asgari, G. (2018). Comparative study of sun-dried and oven-dried Malva sylvestris biomass for high--rate Cu(II) removal from waste water. Proc. Saf. Environ. Prot. 116, 61–73. DOI: 10.1016/j.psep.2018.01.012.10.1016/j.psep.2018.01.012Open DOISearch in Google Scholar

53. Sinha, A., Singh, V.N., Mehta, B.R. & Khare, S.K. (2011). Synthesis and characterization of monodispersed orthorhombic manganese oxide nanoparticles produced by Bacillussp. cells simultaneous to its bioremediation. J. Hazard. Mater. 192(2), 620–627. DOI: 10.1016/j.jhazmat.2011.05.103.10.1016/j.jhazmat.2011.05.10321715090Open DOISearch in Google Scholar

54. Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40(9), 1361–1403. DOI: 10.1021/ja02242a004.10.1021/ja02242a004Open DOISearch in Google Scholar

55. Freundlich, H. (1907). Über die adsorption in lösungen. Z. Für Phys. Chem. 57, 385–470. DOI: 10.1515/zpch-1907-5723.10.1515/zpch-1907-5723Open DOISearch in Google Scholar

56. Yargıç, A.Ş., Yarbay Şahin, R.Z., Özbay, N. & Önal, E. (2015). Assessment of toxic copper(II) biosorption from aqueous solution by chemically-treated tomato waste. J. Clean. Prod. 88, 152–159. DOI: 10.1016/j.jclepro.2014.05.087.10.1016/j.jclepro.2014.05.087Open DOISearch in Google Scholar

57. Haroon, H., Gardazi, S.M.H., Butt, T.A., Pervez, A., Mahmood, Q. & Bilal, M.(2017). Novel lignocellulosic wastes for comparative adsorption of Cr(VI): equilibrium kinetics and thermodynamic studies. Pol. J. Chem. Technol. 19(2), 6–15. DOI: 10.1515/pjct-2017-0021.10.1515/pjct-2017-0021Open DOISearch in Google Scholar

eISSN:
1899-4741
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering